Who’s behind Cities100?

MANAGEMENT, SUSTAINIA
Morten Nielsen, Managing Director, Sustainia

MANAGEMENT, C40
Mark Watts, Executive Director, C40 Cities Climate Leadership Group
Kevin Austin, Deputy Executive Director, C40 Cities Climate Leadership Group

EDITOR
Monica Keaney, Analyst, Sustainia

LEAD WRITERS
Julia Brown, Project Coordinator, Sustainia
Djeneba Sako, Project Coordinator, Sustainia

DESIGN
Ángel Herrera, Head of Design, Sustainia
Linnea Marie Ryländer Hansen, Assistant Designer, Sustainia

CONTRIBUTORS
C40 Cities Climate Leadership Group
James Alexander, Head of the Finance and Economic Development Initiative; Emily Briday, Head of Events; Ricardo Cepeda-Márquez, Head of the Solid Waste Initiative; Skye d’Almeida, Network Manager, Sustainable Infrastructure Finance; Michael Doust, Head of Measurement & Planning; Kayley Goff, Awards & Events Coordinator; Mandy Ikert, Head of the Adaptation and Water Initiative; Max Jamieson, Programme Manager, Compact of Mayors; Shannon Lawrence, Director of Global Initiatives; Amy Leitch, Adaptation and Water Initiative; Gunjan Parik, Head of the Transportation Initiative; Anur Rao, Energy Initiative; Luke Sherlock, Network Manager, Municipal Buildings Efficiency; Zoe Sprigings, Head of the Energy Initiative; Zach Tofias, Head of the Urban Planning and Development Initiative

Sustainia
Esben Alslund-Lanthén, Senior Analyst; Emil Damgaard Grann, Analyst; Katie McCrory, Senior Global Communications Lead; Joachim Marc Christensen, Communications Officer; Henriette Weber, Senior Global Digital Lead

PROOFREADING
Justin Gerdes

Reach us here

SUSTAINIA
Bredgade 34, 1st Floor
1260 Copenhagen K, Denmark
www.sustainia.me
+45 33 93 93 23

C40 CITIES CLIMATE LEADERSHIP GROUP
North West Entrance, City-Gate House
39-45 Finsbury Square, Level 6
London EC2A 1PX, United Kingdom
www.c40.org

A special thank you goes out to all the cities that submitted an application for the Cities100. You have all been a great source of inspiration.
→ 100 solutions for climate action in cities
City Solutions

Clean Energy

World’s Largest Thermal Hydrolysis Plant
WASHINGTON, D.C. – P.14

North America's First Renewably Powered City
VANCOUVER – P.15

Automated Measuring Supports Biogas Project
ISTANBUL – P.16

Large Biomass Plant Powers Fossil Fuel-Free Future
STOCKHOLM – P.18

Waste-to-Energy Partnership Saves Money
JOHANNESBURG – P.19

Greening District Heating Cuts Emissions
PARIS – P.20

Mapping Energy Use to Boost Resilience
BOSTON – P.22

Solid Waste

System Overhaul Reduces and Diverts Waste
AUCKLAND – P.26

Creating Electricity and Compost from Organic Waste
QUITO – P.27

Segregating Waste Leads to a Better Quality of Life
KOLKATA – P.28

Four Waste Streams Processed at One Facility
BUENOS AIRES – P.30

Turning Waste into Energy and Better Livelihoods
DELHI – P.31

Food Waste Is Given New Value
EUGENE – P.32

Waste-to-Energy Project Supplies National Grid
BOGOTA – P.33

Recycling Centers Cut Waste and Spur Behavior Change
HONG KONG – P.34

Tree Planting Project Sequesters and Reduces CO2 Emissions
SALVADOR – P.36

Adaptation Plans & Assessments

Resilience Study Prepares Communities for Future Flooding
NEW YORK CITY – P.40

Adaptation Strategy Secures Crucial Resources
PARIS – P.43

Bottom-up Plan Protects Against Rain, Drought, and Heat
BOLOGNA – P.45

Decision Support System Sends Extreme Weather Warnings
DUBAI – P.47

Adaptation Report Informs Cross-Sector Collaboration
RIO DE JANEIRO – P.51

Water Security through Supply and Demand Management
HONG KONG – P.54

Adaptive Measuring Supports Biogas Project
ISTANBUL – P.16

Embracing the River to Combat Flooding
NJMEGEN – P.56

Capturing Rainwater Curbs Flooding Events
NEW ORLEANS – P.58

Restoring Ecosystems Provides Opportunities for Locals
MEDELLIN – P.59

Innovative Data Analysis Leads to Coastline Protection
NEW YORK CITY – P.60

Waterlogging Prevented by Sponge Infrastructure
WUHAN – P.61

Ecosystem Upgrade Secures City
WATER SUPPLY: BOGOTA – P.64

Collective Action Spurs Emissions Reductions
AUCKLAND – P.68

Comprehensive Plan Yields Quick Results
SINGAPORE – P.69

Working towards Carbon Neutral City Operations
CANBERRA – P.70

Renewed Plan Advances Climate Action
PARIS – P.72

Bipartisan Plan Accelerates Climate Change Action
SAN DIEGO – P.73

Inventory Upgrade Improves Climate Strategy
BUENOS AIRES – P.74

Strategy Drives Resilient City Operations in Africa
KAMPALA – P.76

Low-Carbon Megacity Encourages Green Growth
GUANGZHOU – P.77

Consumption Inventory Shows True Emissions
OAKLAND – P.78

Carbon-Neutral Commitment in Global South
RIO DE JANEIRO – P.80
Building Energy Efficiency

- **Energy Audits and Retrofits Mandated for Large Public Buildings**
 - GUANGZHOU – P.84
- **Apartment Retrofits Prioritize Resident Well-Being**
 - TORONTO – P.85
- **Equitable Retrofits Lower Energy Bills**
 - SAN FRANCISCO – P.86
- **City Alliance Yields Nationwide Energy Savings**
 - SYDNEY & MELBOURNE – P.88
- **Owners and Renters Collaborate to Reduce Energy Use**
 - TOKYO – P.89
- **Behavioral Changes and Building Upgrades Yield Energy Savings**
 - CHARLOTTE – P.90
- **Research Center Built with Green Design Principles**
 - NEW YORK CITY – P.92
- **Hospital Program Shrinks CO2, Improves Patient Experience**
 - BOGOTA – P.94
- **Online Tool Tracks Apartment Energy Use**
 - VILNIUS – P.95

Finance & Economic Development

- **Reverse Auctions Secure Low-Cost Renewable Energy**
 - CANBERRA – P.98
- **Energy Savings Fund Efficiency Investments**
 - CHICAGO – P.99
- **Affordable Loans for Home Efficiency Upgrades**
 - TORONTO – P.100
- **Green Finance Advances Housing Affordability**
 - WASHINGTON, D.C. – P.102
- **Green Procurement in the Construction Industry**
 - OSLO – P.103
- **Revolving Fund Yields Large Municipal Savings**
 - AUCKLAND – P.105
- **Energy Performance Contracting Finances Resilient Infrastructure**
 - BOSTON – P.106
- **Low-Cost Financing Enables Affordable Housing Retrofits**
 - NEW YORK CITY – P.108

Social Equity & Climate Change

- **Sustainability Agenda Protects Public Housing**
 - NEW YORK CITY – P.112
- **Public-Private Partnership Prevents Energy Poverty**
 - SEOUL – P.115
- **Environmental Education Targets Low-Income Youth**
 - BUENOS AIRES – P.116
- **Electric Car-Sharing in Low-Income Communities**
 - LOS ANGELES – P.117
- **New Park Boosts Resilience and Economic Potential**
 - MEXICO CITY – P.118
- **Low-Cost Bike-Share Memberships for Low-Income Earners**
 - WASHINGTON, D.C. – P.120
- **Heatwave Action Plan Protects Vulnerable Residents**
 - ATHENS – P.123

Transportation

- **Carbon Credit Scheme Bolsters Massive Bike-Share Program**
 - WUHAN – P.126
- **Sub-Saharan Africa’s First Light-Rail Train**
 - ADDIS ABABA – P.127
- **Defining City Blocks to Tackle Traffic-Related Emissions**
 - BARCELONA – P.129
- **World’s Fastest Electric Taxi Fleet Overhaul**
 - TAIYUAN – P.130
- **Collaborative Approach to Public Transit Innovation**
 - GOTHENBURG – P.131
- **Transportation Overhaul Guides Urban Development**
 - MEXICO CITY – P.133
- **Universal Fare-Free Public Transport**
 - TALLINN – P.134
- **Smart Traffic Signals Boost Cycling**
 - COPENHAGEN – P.135
- **Landfill-Captured Biomethane Powers Bus Fleet**
 - SANTA MONICA – P.136
- **Getting Ready for Mass Electrification of Transport**
 - SEATTLE – P.140
- **Holistic Approach to Active Mobility**
 - TORRES VEDRAS – P.137
- **Transport Policy Curbs Air Pollution**
 - PARIS – P.138

Sustainable Communities

- **Neighborhood Renewal Boosts Climate Resilience**
 - TORONTO – P.144
- **Transformative Land Use Plan Supports Transit**
 - CAPE TOWN – P.145
- **Smart Green Waterfront Development**
 - AUCKLAND – P.147
- **From Brownfield to Low-Carbon Business District**
 - HONG KONG – P.148
- **Increased Connectivity Curbs Urban Sprawl**
 - ATLANTA – P.149
- **Inclusive Development Plan for City Resilience**
 - CAMBRIDGE – P.150
- **Walkable City Drives Long-Term Growth**
 - STOCKHOLM – P.151
- **Dense District Seeks Energy-Efficient Future**
 - WUHAN – P.154
- **Citizen Initiatives Drive Climate Action**
 - BARCELONA – P.155
Foreword

Think globally, act locally

How mayors will deliver the aims of the Paris Agreement

Mayors may not have coined the phrase “think globally, act locally” but they are definitely the biggest proponents of it. This is the mindset that local leaders around the world have not only adopted, but entrenched into their policies as they seek to combat global climate change. It is with this approach that I work to develop and implement policies that will clean Paris’ air, green its buildings, and give its streets back to the people – local actions that, when added up, improve our entire planet. This is also the framework that underpins every project featured in this year’s Cities100. These 100 city solutions bring to center stage the fact that local action is the foundation for mitigating and adapting to climate change globally.

Mayors were on the global stage last December, as I welcomed – with UN Secretary-General’s Special Envoy for Cities and Climate Change Michael Bloomberg – local leaders from around the world to attend an historic summit at Paris City Hall. I was inspired by their commitments. We discussed how cities could take coordinated and collective action to combat climate change. The result sent a clear message: In agreeing to deliver up to 3.7 gigatons of urban greenhouse gas emissions reductions annually by 2030 and supporting a long-term goal of reducing emissions by 80% by 2050, these mayors took a stand to protect their citizens, their resources, their businesses, and the future of their cities.

It has become obvious that cities play a critical role in adapting to climate change and delivering on the ambition of the Paris Agreement. Urban areas account for most of the world’s carbon emissions, and their share will continue to increase as two-thirds of the world will call cities home by 2050. Such booming populations bring with them challenges, but also myriad opportunities to adapt and grow sustainably. As Cities100 showcases, cities around the world are already capitalizing on these opportunities and employing local solutions that not only reduce CO₂ emissions and boost resilience, but also promote health, bolster economic vitality, and alleviate social inequities.

What happened during COP21 in Paris will guide our global thinking for the coming decades. As newly-elected C40 Chair, it is my duty to ensure that mayors around the world will look to and learn from front-running cities’ innovative projects and plans showcased in Cities100, as we all work to build a better future and cultivate strong, sustainable societies. This is how cities will keep on getting the job done.

Think globally, act locally
"THESE 100 CITY SOLUTIONS BRING TO CENTER STAGE THE FACT THAT LOCAL ACTION IS THE FOUNDATION FOR MITIGATING AND ADAPTING TO CLIMATE CHANGE GLOBALLY."

C40 Chair-Elect and Mayor of Paris
City Solutions for an Urbanizing World

Last December, the Paris Agreement signed at COP21 cemented the fact that urgent action is needed to solve the many challenges of climate change. Cities100, now in its second year, proves that innovative and progressive climate action is well underway in cities around the world. From reducing waste to promoting walkability, retrofitting buildings to installing green infrastructure, the 100 solutions from 61 cities presented here showcase how local governments around the world are taking the necessary steps to mitigate and adapt to climate change, while at the same time creating valuable co-benefits for their economies, communities, and citizens’ health.

These 100 solutions were selected after a review of 160 submissions from 75 cities spread across the globe. By identifying 100 readily available city solutions, the partners behind Cities100 – C40, Realdania, and Sustainia – wish to highlight the potential for a sustainable urban future and inspire other change makers throughout the world.

How we uncovered the 100 projects
Cities100 is a mission shared by Sustainia, C40, and Realdania to find the 100 leading city solutions to climate change. To identify groundbreaking projects from around the world, C40 and Sustainia launched a public campaign for applications, which yielded 160 eligible project submissions. In order to find the projects with the largest potential to create low-carbon and resilient cities, the applications were vetted and assessed by city and climate change experts at C40 and Sustainia, who used a detailed scoring system based on five criteria:

1. **CLIMATE ACTION**
 The expected or achieved CO₂ reduction and/or climate risk mitigation of the project.

2. **CO-BENEFITS**
 The extent to which the project has positive co-benefits for other aspects of society, in addition to its climate change mitigation and CO₂ reductions.

3. **INNOVATION**
 The extent to which the project takes an entirely new or groundbreaking approach to address major environmental issues.

4. **GOVERNANCE**
 How well the project is incorporated into larger city plans, collaborates with other entities in the city, and engages citizens in the project’s development and implementation.

5. **SHARING AND SCALING**
 The extent to which the project experience is shared with other cities and regions, and the future potential to scale the project within the city.
WHAT IS SUSTAINIA?
Sustainia is an international sustainability think tank and consultancy working to accelerate action towards a sustainable future. In order to realize this, we partner with companies, cities, and organizations to map their position, navigate the changing landscape, and communicate with impact. Sustainia is founded by Scandinavian think tank Monday Morning and developed in close collaboration with UN Global Compact, Regions20, Connect4Climate, and world-leading companies and organizations, DNV GL, Realdania, Storebrand, and WWF.

WHAT IS C40?
The C40 Cities Climate Leadership Group, now in its 11th year, connects more than 85 of the world’s greatest cities, representing 650+ million people and one quarter of the global economy. Created and led by cities, C40 is focused on tackling climate change and driving urban action that reduces greenhouse gas emissions and climate risks, while increasing the health, wellbeing and economic opportunities of urban citizens. The current chair of the C40 is Rio de Janeiro Mayor Eduardo Paes; three-term Mayor of New York City Michael R. Bloomberg serves as President of the Board. C40’s work is made possible by three strategic funders: Bloomberg Philanthropies, Children’s Investment Fund Foundation (CIFF), and Realdania.

WHAT IS REALDANIA?
Realdania is a Danish, modern philanthropic association that works to create quality of life and benefit the common good by improving the built environment: cities, buildings, and the built heritage. Realdania is both a Strategic Funder of C40 and a Founding Partner of Sustainia.
Cities100 is a testament to the fact that cities are leading the global movement toward a low carbon future.
THIS PUBLICATION PRESENTS SOLUTIONS WITHIN 10 CITY SECTORS:
The solutions in the Clean Energy sector highlight the use of policy to usher in widespread adoption of renewable energy, the growing role of data to deliver efficiency clean energy rollouts, and how new technologies increase the viability of waste to energy systems to deliver large scale outputs.
CLEAN ENERGY

CITY: WASHINGTON, D.C.

World’s Largest Thermal Hydrolysis Plant

The largest thermal hydrolysis installation in the world helps Washington, D.C. produce bioenergy more efficiently while turning waste into a productive resource.

Washington, D.C. has brought to scale one of the most innovative waste-to-energy technologies by building the Walter F. Bailey Bioenergy Facility, the largest thermal hydrolysis installation in the world. The system produces 10 MW of electricity and supplies one-third of the power requirements of the connected Blue Plains wastewater facility. Thermal hydrolysis is a process in which remaining solids from wastewater treatment are exposed to high heat and pressure that weaken the cells’ structure and accelerate the production of methane as the solids biodegrade. The methane is used to generate energy; steam generated in the process is then fed back into the system to assist the initial heating step.

As the procedure purifies the remaining waste solids, or biosolids, which can then be used as natural fertilizers, thermal hydrolysis transforms waste into a productive resource with positive benefits for the environment. The sanitized residue is used around the District as a natural fertilizer for urban gardens and green infrastructure projects, and the city is planning a large-scale commercialization of the fertilizer.

The facility includes a dewatering building, 32 thermal hydrolysis vessels, and four concrete anaerobic digesters that can hold 14.3 million liters of solids.
Vancouver is the first city in North America to develop a Renewable City Strategy (RCS) to derive 100% of the city’s entire energy needs from renewable sources by 2050. To achieve this goal, the city is prioritizing efforts around reducing emissions from its most polluting sectors, buildings and transportation, and increasing the use and supply of renewables. In the transport sector, this includes measures such as the promotion of renewably powered car-sharing fleets and the development of standards to support renewably powered private vehicles. Simultaneously, retrofits of existing buildings and ensuring the grid energy supply is 100% renewable will spur the clean energy shift for the city’s building stock.

Underpinning the strategy is an innovative energy system model that maps energy demand across the year and by time of day, matching it with an energy supply model to identify the most economical ways energy demand can be met by renewable sources. In this way, Vancouver is using cutting-edge technology – employed for the first time by a municipality – to solve pressing energy concerns and guide plans for a 100% renewable future.

→ Vancouver’s ambitious vision to power the city entirely on renewable energy will help curb emissions from its two biggest emitters: transport and buildings.

THE CHALLENGE

In recent years, Vancouver has grown significantly and now uses more than 59.3 million gigajoules (GJ) of energy a year, resulting in 2.8 million tons of CO₂ emissions. By using innovative energy models to target the sectors most responsible for greenhouse gas emissions, buildings and transportation, the city is mitigating its carbon footprint and working toward its goal of using only renewable energy by 2050.

CO-BENEFITS

- **Environmental**
 The cumulative effect of the strategy, when fully implemented by 2050, is to reduce the city’s total energy use by one-third compared to 2014 levels, saving 21 million GJ of energy a year.

- **Social**
 The city plans to permanently ban car traffic on a number of downtown streets under the RCS in order to create vibrant and active public spaces.

- **Economic**
 The shift to renewable energy promotes innovation and the development of new business models and technologies that can boost employment in green sectors.

- **Health**
 The RCS is closely tied to Vancouver’s Healthy City Strategy, a comprehensive plan for social resilience and sustainability.

CITY: VANCOUVER

North America’s First Renewably Powered City

Vancouver is the first city in North America to derive 100% of the city’s entire energy needs from renewable sources by 2050. To achieve this goal, the city is prioritizing efforts around reducing emissions from its most polluting sectors, buildings and transportation, and increasing the use and supply of renewables. In the transport sector, this includes measures such as the promotion of renewably powered car-sharing fleets and the development of standards to support renewably powered private vehicles. Simultaneously, retrofits of existing buildings and ensuring the grid energy supply is 100% renewable will spur the clean energy shift for the city’s building stock.

Underpinning the strategy is an innovative energy system model that maps energy demand across the year and by time of day, matching it with an energy supply model to identify the most economical ways energy demand can be met by renewable sources. In this way, Vancouver is using cutting-edge technology – employed for the first time by a municipality – to solve pressing energy concerns and guide plans for a 100% renewable future.

By 2050, Vancouver’s goal is that 25% of private cars will be renewably powered EVs and 45% will be plug-in hybrids running on renewable electricity and biofuels.
Automated Measuring Supports Biogas Project

Located in Istanbul, Turkey’s largest landfill gas-to-energy project generates 50 MWh, enough to provide electricity for 200,000 families. The project consists of two power plants, located close to the Kömürücuoda and the Odayeri landfills. At each landfill site, wells and pipes dug through solid waste collect methane gas and transfer it to a heat exchanger and demister for cooling and dehumidification. The treated gas feeds a combustion engine that drives an electric generator that supplies power the national grid.

Setting Istanbul’s landfill gas-to-energy site apart from others is the fact that its facilities are equipped with an automatic measurement and adjustment system that controls the flow of gas from the 500 wells and 50 pipelines dispersed throughout the landfill sites. As a result of the landfill gas-to-energy project, potent methane gas emissions are mitigated and the equivalent of approximately 1.2 million tons of CO₂ emissions per year were avoided between 2011 and 2015.
Through its new combined heat and power plant, CHP KVV8, Stockholm is powering 90% of its district heating system with renewable energy. The biomass used to power the plant consists mostly of locally sourced forest residue and wood waste that has received Forest Stewardship Council certification. Flexible operations enable the plant to adjust the production of both heat and electricity to meet current demand, helping the city achieve energy efficiency gains. When fully operational in 2017, CHP KVV8 will provide 1,700 GWh of heat and 750 GWh of electricity annually, generating enough heat for 190,000 households.

The large-scale plant contributes to Stockholm’s goals of reducing CO₂ emissions, improving air quality, and ultimately becoming a fossil fuel-free city by 2050. Along with wind and solar power, the CHP KV8 plant, managed by Fortum Värme, a joint venture between the city and the energy company Fortum, will form the backbone of the city’s renewably powered future.

By using a large-scale biomass plant to power its district heating system, Stockholm is inching closer to its goal of using 100% renewable energy by 2050.

Through its new combined heat and power plant, CHP KVV8, Stockholm is powering 90% of its district heating system with renewable energy. The biomass used to power the plant consists mostly of locally sourced forest residue and wood waste that has received Forest Stewardship Council certification. Flexible operations enable the plant to adjust the production of both heat and electricity to meet current demand, helping the city achieve energy efficiency gains. When fully operational in 2017, CHP KVV8 will provide 1,700 GWh of heat and 750 GWh of electricity annually, generating enough heat for 190,000 households.

The large-scale plant contributes to Stockholm’s goals of reducing CO₂ emissions, improving air quality, and ultimately becoming a fossil fuel-free city by 2050. Along with wind and solar power, the CHP KV8 plant, managed by Fortum Värme, a joint venture between the city and the energy company Fortum, will form the backbone of the city’s renewably powered future.

→ By using a large-scale biomass plant to power its district heating system, Stockholm is inching closer to its goal of using 100% renewable energy by 2050.

Through its new combined heat and power plant, CHP KVV8, Stockholm is powering 90% of its district heating system with renewable energy. The biomass used to power the plant consists mostly of locally sourced forest residue and wood waste that has received Forest Stewardship Council certification. Flexible operations enable the plant to adjust the production of both heat and electricity to meet current demand, helping the city achieve energy efficiency gains. When fully operational in 2017, CHP KVV8 will provide 1,700 GWh of heat and 750 GWh of electricity annually, generating enough heat for 190,000 households.

The large-scale plant contributes to Stockholm’s goals of reducing CO₂ emissions, improving air quality, and ultimately becoming a fossil fuel-free city by 2050. Along with wind and solar power, the CHP KV8 plant, managed by Fortum Värme, a joint venture between the city and the energy company Fortum, will form the backbone of the city’s renewably powered future.
In 2011, Johannesburg launched a project to transform methane emissions from wastewater and landfill waste into energy. The project currently supplies 1.1 MW of electricity to the Northern Water Treatment plant, the largest in the city, which is equivalent to 12% of the plant’s operational needs. The city plans to expand the project to four other wastewater plants. In addition, to further scale up this solution, Johannesburg will partner with an energy management services company to develop biodigestors that will process organic waste from the city’s five landfills, turning it into biogas used to fuel the city’s bus fleet.

Recognized as a Clean Development Mechanism project by the United Nations Framework Convention on Climate Change, this initiative is the result of a public-private partnership wherein the city provides the rights to the landfill gas to the developer, who is responsible for financing and operating the project. This arrangement enables the city to undertake the project risk-free while receiving royalties from the developer.

In 2011, Johannesburg launched a project to transform methane emissions from wastewater and landfill waste into energy. The project currently supplies 1.1 MW of electricity to the Northern Water Treatment plant, the largest in the city, which is equivalent to 12% of the plant’s operational needs. The city plans to expand the project to four other wastewater plants. In addition, to further scale up this solution, Johannesburg will partner with an energy management services company to develop biodigestors that will process organic waste from the city’s five landfills, turning it into biogas used to fuel the city’s bus fleet.

Recognized as a Clean Development Mechanism project by the United Nations Framework Convention on Climate Change, this initiative is the result of a public-private partnership wherein the city provides the rights to the landfill gas to the developer, who is responsible for financing and operating the project. This arrangement enables the city to undertake the project risk-free while receiving royalties from the developer.

The project has been allocated a 20 year power sale agreement for 13MW of generation capacity from the five landfill sites under this program.
In 2016, Paris halved the use of coal in its extensive district heating network, and now powers 50% of its heating network with renewable and recovered energy. The new energy mix comprises 1% geothermal, 2% biofuel, 10% biomass, and 41% heat generated by the thermal treatment of waste. The city is also converting five power plants from coal to natural gas. This shift will contribute to a 25% decrease in CO₂ emissions, a 98% decrease in SO₂ emissions, and will generate enough energy to heat 500,000 houses.

This large-scale transition helps the city increase its share of renewable energy sources by up to 10%, and works towards fulfilling Paris’ commitment that 25% of its energy consumption will be powered by renewable or recovered sources by 2020. The goal works within the larger framework of Paris’s Climate Action Plan, which aims to reduce the city’s CO₂ emissions by 25% by 2020.

→ Paris is transforming its energy portfolio by powering 50% of its district heating network with a mix of new renewable energy sources.

In 2016, Paris halved the use of coal in its extensive district heating network, and now powers 50% of the heating network with renewable and recovered energy. The new energy mix comprises 1% geothermal, 2% biofuel, 10% biomass, and 41% heat generated by the thermal treatment of waste. The city is also converting five power plants from coal to natural gas. This shift will contribute to a 25% decrease in CO₂ emissions, a 98% decrease in SO₂ emissions, and will generate enough energy to heat 500,000 houses.

This large-scale transition helps the city increase its share of renewable energy sources by up to 10%, and works towards fulfilling Paris’ commitment that 25% of its energy consumption will be powered by renewable or recovered sources by 2020. The goal works within the larger framework of Paris’s Climate Action Plan, which aims to reduce the city’s CO₂ emissions by 25% by 2020.
As part of the Boston Community Energy Study, the city developed one of the most detailed city energy maps in existence in order to scope where local clean energy generation, district energy, and microgrids are feasible at a community scale. The map tracks the hourly energy use of 85,000 buildings in Boston, including commercial buildings, affordable housing, and critical facilities like shelters and food warehouses. With a 94% accuracy level for detecting electricity consumption, the map also takes into consideration hypothetical engineering solutions and assesses the feasibility of local clean energy generation. Using this information, potential projects are assessed according to their contribution to community resilience, energy costs, and greenhouse gas emissions reduction.

To date, the map has pinpointed 42 districts where renewable energy supply is feasible. The city plans to reach out to communities and partner with energy utilities in the second step of the project in order to realize community energy solutions. Boston will work with a local electric utility to study its first pilot project, a multi-user microgrid in the city’s industrial park.
In 2016, New York City passed a law requiring local government agencies to assess all city-owned rooftops for solar photovoltaic (PV) potential, in order to support the city’s goal to install 100 MW of solar PV on municipal property by 2025. Agencies must report on factors including the potential reduction in energy use and greenhouse gas emissions, the financing of the project, and whether buildings’ rooftops are suitable for a solar installation. In keeping track of the projects, the city will also take into consideration the financial savings accruing from CO₂ emissions reductions in order to better reflect the value of the retrofits.

To date, the city has installed 8.8 MW of solar PV across 52 municipal buildings. Informed by the government agencies’ evaluations, New York City plans to develop a strategy to expand the initiative to 4,000 city-owned buildings, which include schools, hospitals, libraries, courthouses, firehouses, offices, police precincts, wastewater treatment plants, and recreation centers, and which will help the city reach its goal to reduce city-wide greenhouse gas emissions 80% by 2050.

New York City’s government agencies are now legally required to assess potential solar PV retrofits at all municipal buildings.

In 2016, New York City passed a law requiring local government agencies to assess all city-owned rooftops for solar photovoltaic (PV) potential, in order to support the city’s goal to install 100 MW of solar PV on municipal property by 2025. Agencies must report on factors including the potential reduction in energy use and greenhouse gas emissions, the financing of the project, and whether buildings’ rooftops are suitable for a solar installation. In keeping track of the projects, the city will also take into consideration the financial savings accruing from CO₂ emissions reductions in order to better reflect the value of the retrofits.

To date, the city has installed 8.8 MW of solar PV across 52 municipal buildings. Informed by the government agencies’ evaluations, New York City plans to develop a strategy to expand the initiative to 4,000 city-owned buildings, which include schools, hospitals, libraries, courthouses, firehouses, offices, police precincts, wastewater treatment plants, and recreation centers, and which will help the city reach its goal to reduce city-wide greenhouse gas emissions 80% by 2050.

New York City’s government agencies are now legally required to assess potential solar PV retrofits at all municipal buildings.
SOLID WASTE

DELHI

Turning Waste into Energy and Better Livelihoods
P. 31

KOLKATA

Segregating Waste Leads to a Better Quality of Life
P. 28

CAPE TOWN

Turning Trashed Bins into Trash Bins
P. 37

HONG KONG

Recycling Centers Cut Waste and Spur Behavior Change
P. 34

AUCKLAND

System Overhaul Reduces and Diverts Waste
P. 26
Solutions in the Solid Waste sector help cities transform waste resources into clean energy and raw materials, effectively manage waste collection and separation, and promote behavioral change among residents, proving the potential to reduce greenhouse gas emissions from city waste while providing co-benefits such as reduced air and soil pollution and fossil fuel consumption.
In efforts to achieve zero waste by 2040, Auckland initiated the Waste to Resources project in 2012, diverting materials from the waste stream and improving resource efficiency throughout the city. As one of the biggest changes in waste management in the Southern Hemisphere, seven regional services were folded into one improved city-wide waste management system. The city aims to have new services rolled out progressively by 2020, such as a network of community-led resource recovery centers, a third bin collection for food waste, and a new inorganic waste service that diverts useful material to community organizations.

Waste reduction is being encouraged through right-sizing of refuse bins and pay-as-you-throw pricing, while an innovative community-based approach is using creativity to engage residents in driving locally inspired and owned solutions. This active citizen engagement plays a critical part in helping the Waste to Resources project contribute to the city’s overall goal of reducing CO₂ emissions by 40% by 2040.

In a complete overhaul of the city’s waste management system, Auckland’s Waste to Resources project has put the city on track to achieve zero waste by 2040.

In 2013, 9.3% of Auckland’s greenhouse gas emissions came from waste, with 1.2 million metric tons sent to landfill in 2011. At the same time, around 65% of curbside collected waste could be recovered, re-used, or recycled. The Auckland Waste to Resources project mitigates these issues and puts the city on track to achieve zero waste status by 2040.

CO-BENEFITS

Environmental
Domestic curbside waste has dropped from 160 kg per person in 2010 to 152 kg per person in 2015, before city-wide service changes had even been rolled out.

Social
The 20 community recycling centers opened under the project are expected to provide at least 85 new jobs, with one-quarter of current positions filled by those who were among the long-term unemployed.

Economic
Under the Waste to Resources project, community groups are repurposing materials into saleable goods, creating a new source of revenue for the city.

Health
In its efforts to promote waste reduction and diversion, the project encourages healthy eating and community gardening, with one Maori community planting 80,000 sweet potato plants as part of the project.
Under its Development and Land Use Plan, in 2015 Quito launched an integrated waste management project based on the concept of a circular economy, while encouraging social and environmental co-responsibility. The Organic Waste and Climate Change project has three elements: generate 5 MW of electricity by 2017 with landfill biogas, process 12 million tons of organic waste into compost through the construction of a municipal organic waste processing plant, and improve paper and cardboard recycling by means of waste recovery, processing, and commercialization. The project aims to achieve a 33% reduction in greenhouse gas emissions from waste, which is equivalent to approximately 300,000 tons of CO₂, by 2017.

Citizen engagement is key to the project’s success, and has been carried out using a combination of outreach campaigns, public meetings, environmental forums, and social media. Information about the project has been made open and transparent for everyone, aiming to include all sectors of society in decision-making.

CREATING ELECTRICITY AND COMPOST FROM ORGANIC WASTE

QUITO is reducing emissions and changing the definition of waste by generating clean energy, creating compost, and recycling paper and cardboard as part of the Organic Waste and Climate Change project.

THE CHALLENGE

In Quito, an average of 1,877 tons of waste is sent to the Inga landfill per year, accounting for 13% of the city’s carbon footprint. Sixty percent of waste in Inga landfill is organic, and its decomposition results in the generation of methane, contributing to climate change. By recycling, composting, and generating biogas through the Organic Waste and Climate Change project, Quito is reducing emissions and giving waste a new purpose.

CO-BENEFITS

- **Environmental**
 Since 2015, 37,723 tons of paper and cardboard have been recycled through the project, preventing CO₂ emissions from future logging and production.

- **Social**
 The project will link 280 small-scale recyclers, a vulnerable sector of the population, ensuring access to minimum wage.

- **Economic**
 The waste market is expected to expand, with 13,249 new jobs for material traders arising through the project.

- **Health**
 By diverting waste from the landfill, the project improves the hygiene of municipal markets, reducing the risk of infections.

Each of Quito’s two biogas generators capture and utilize 230,000 m³ of methane gas per day.
CITY: KOLKATA

Segregating Waste Leads to a Better Quality of Life

In an effort to end waste burning, Kolkata is segregating its waste under the Solid Waste Management Project, creating a cleaner, healthier city while raising community awareness.

The Kolkata Solid Waste Management Project encourages segregation of waste, a feat that had never been accomplished before in the city. Targeting 1 million people across six boroughs and covering over 65 km² of land on the western bank of the River Ganges, the project focuses on recycling, composting organic waste, burying inert waste, and treating septic sludge. The project takes an engineering approach, through the development of infrastructure, but also incorporates a soft approach, including an eight-year mass awareness program, ensuring community participation. A common Regional Waste Management Centre, which houses a sanitary landfill, leachate treatment plant, and septic tank sludge treatment plant, as well as five composting centers, have been constructed, as part of the project.

Eventually, the ambitious project aims to reduce open dumping and waste burning by 100% and achieve 100% waste segregation at the source. In addition, the project will monitor air quality, reduce the concentration of landfill methane, and preserve groundwater within 50 m of the periphery of the Regional Waste Management Centre. Since the program launched, the rate of segregation has increased by up to 80%.

THE CHALLENGE

Mounds of waste at the Kolkata dumping site have measured up to 16 m high, causing land, water, air, and visual pollution. Furthermore, disposal of untreated sewage and waste dumping in the River Ganges has resulted in the extinction or endangerment of biodiversity in the area. The Kolkata Solid Waste Management Project has taken actions, through the segregation and appropriate management of waste, to reduce these hazards to the natural environment and the people of the city.

CO-BENEFITS

- **Environmental**
 - Under the Kolkata Solid Waste Management Project, uncontrolled decomposition of waste that generates methane and carbon dioxide has been reduced and will eventually be prevented.

- **Social**
 - Many job opportunities have been provided through the implementation of the project, particularly to unskilled citizens, in waste collection and producing and selling compost.

- **Economic**
 - A new market has been created for compost, as one of Kolkata’s boroughs, covering 10.9 km², can produce more than 25 metric tons and earn approximately $1,026 per day.

- **Health**
 - Since the launch of the Solid Waste Management Project, the city reports a gradual decrease in disease, such as skin and liver ailments, jaundice, malaria, and poliomyelitis, reducing pressure on the health system.

↓ 35%

REDUCTION IN OPEN DUMPING SINCE THE PROJECT LAUNCH

![Locals collecting and separating waste, reducing contamination of the river.](image-url)
The Environmental Park, constructed in 2012, processes almost 35% of waste generated in Buenos Aires, reducing waste sent to landfill and preventing greenhouse gas emissions. The Environmental Park processes four waste streams: construction and demolition, pruning waste, organic, and plastic, and includes an education center, making Buenos Aires one of the first cities in South America to process different waste streams at a single facility. Covering 85 hectares, the treatment plants and education center are connected by footbridges, allowing visitors to walk safely through the facility and learn the importance of recycling, reducing, and reusing waste as well as composting.

In addition to reducing waste sent to landfill and educating the public, the Environmental Park was created using principles of sustainable design, with rainwater collected for irrigation, a solar thermotank, floors made from recycled materials, a green amphitheater, and native and non-native plants that create a forest curtain between the facility and the surrounding suburb. With the help of the Environmental Park, Buenos Aires aims to treat 100% of waste generated in the city by 2020.

CITY: BUENOS AIRES

Four Waste Streams Processed at One Facility

The recently constructed Environmental Park in Buenos Aires has the ability to process construction and demolition, pruning, organic, and plastic waste, reducing waste sent to landfill and emissions, while saving money.

The Environmental Park, constructed in 2012, processes almost 35% of waste generated in Buenos Aires, reducing waste sent to landfill and preventing greenhouse gas emissions. The Environmental Park processes four waste streams: construction and demolition, pruning waste, organic, and plastic, and includes an education center, making Buenos Aires one of the first cities in South America to process different waste streams at a single facility. Covering 85 hectares, the treatment plants and education center are connected by footbridges, allowing visitors to walk safely through the facility and learn the importance of recycling, reducing, and reusing waste as well as composting.

In addition to reducing waste sent to landfill and educating the public, the Environmental Park was created using principles of sustainable design, with rainwater collected for irrigation, a solar thermotank, floors made from recycled materials, a green amphitheater, and native and non-native plants that create a forest curtain between the facility and the surrounding suburb. With the help of the Environmental Park, Buenos Aires aims to treat 100% of waste generated in the city by 2020.

CO-BENEFITS

Environmental
18,000 metric tons of pruning waste was treated at the Environmental Park and reused for mulch or soil stabilizer from June 2015 to April 2016.

Social
The Ministry of Environment works with the Ministry of Education to encourage primary schools, secondary schools, and universities to visit and tour the Environmental Park to instill in youth the importance of waste management and other environmental issues.

Economic
The Construction and Demolition Facility in the Environmental Park can process 2,400 metric tons of waste daily, saving the city about $20,600 per day.

Pruning waste is one of the four waste streams processed at Buenos Aires’ facility.
Established in Delhi in 2011, the Ghazipur Waste to Energy Plant is India’s state-of-the-art facility, creating energy out of would-be landfill waste and contributing to the country’s goal of achieving 40% non-fossil fuel-based energy by 2030. The facility processes 2,000 tons of waste per day, generating 12 MW of power and 127 tons of fuel, which can be used in cement and power plants as an alternate source of energy. The plant has also invested heavily into air pollution control devices that conform to the European Industrial Emissions Directive, which is much more stringent than Indian norms. Estimates show that dumping of municipal solid waste at the Ghazipur dumpsite should drop by 90% within 25 years.

In addition to reducing waste to landfill and generating power and fuel, the plant focuses on the community as well. The plant provided support to set up Gulmeher, a community center that provides about 200 local women, who previously earned a living picking waste at the Ghazipur dumpsite, with direct employment, capacity building, micro-enterprise support, and artisan training.

CITY: DELHI

Turning Waste into Energy and Better Livelihoods

A new waste-to-energy plant in Delhi is turning would-be landfill waste into a resource, while at the same time reducing illness, encouraging better livelihoods, cleaning the city, and reducing greenhouse gas emissions.

Established in Delhi in 2011, the Ghazipur Waste to Energy Plant is India’s state-of-the-art facility, creating energy out of would-be landfill waste and contributing to the country’s goal of achieving 40% non-fossil fuel-based energy by 2030. The facility processes 2,000 tons of waste per day, generating 12 MW of power and 127 tons of fuel, which can be used in cement and power plants as an alternate source of energy. The plant has also invested heavily into air pollution control devices that conform to the European Industrial Emissions Directive, which is much more stringent than Indian norms. Estimates show that dumping of municipal solid waste at the Ghazipur dumpsite should drop by 90% within 25 years.

In addition to reducing waste to landfill and generating power and fuel, the plant focuses on the community as well. The plant provided support to set up Gulmeher, a community center that provides about 200 local women, who previously earned a living picking waste at the Ghazipur dumpsite, with direct employment, capacity building, micro-enterprise support, and artisan training.

CO-BENEFITS

- **Environmental**
 - In reducing the amount of waste in landfill, the plant will help reduce surface runoff carrying toxins into waterbodies.

- **Social**
 - The Gulmeher initiative, associated with the plant, provides literacy programs, childcare services, and medical care to former waste collectors and their families.

- **Economic**
 - It is estimated that the plant will prevent more than 200 acres of land, valued at more than $308 million, from becoming landfill sites over the next 25 years.

- **Health**
 - Processing municipal solid waste will drastically reduce diseases such as dengue, malaria, as well as eye, skin, gastrointestinal, and respiratory illness, which occur due to open dumping.
Launched in 2011, Love Food Not Waste is a commercial food waste collection program encouraging 200 participating locations to appropriately dispose of food waste, considering its full life-cycle and upstream impacts. A partnership between the City of Eugene, local waste haulers, commercial compost facilities, local businesses, and local retailers, Love Food Not Waste makes waste collection appealing by offering free support services, marketing materials, and monetary incentives. The waste collected is turned into compost and sold as a 100% recycled product on the retail market. A portion of the proceeds go back to the city outreach program, along with a portion donated to local non-profits and schools in Eugene.

By engaging stakeholders from the start, the project has blossomed into a community messaging platform about food waste prevention, diversion, recovery, and rescue. Since its inception, more than 8,000 tons of food waste have been collected, and bagged compost is now sold in more than 80 locations in four states, as well as incorporated into numerous soil amendments sold in Eugene.

→ Eugene is engaging businesses and making a profit by converting food waste to compost through the Love Food Not Waste program.

CITY: EUGENE

Food Waste Is Given New Value

THE CHALLENGE

Food waste is a big contributor to the city’s emissions, with approximately 4,000 tons of greenhouse gases produced per 8,000 tons of food waste to landfill. The Love Food Not Waste Program reduces the amount of greenhouse gases released into the atmosphere and generates a product that sequesters carbon.

CO-BENEFITS

Environmental

The creation of compost under the project has resulted in healthy soil production in school gardens, increasing the city’s ability to sequester carbon.

Social

The Love Food Not Waste program builds social capacity around the issue of food waste in the region by partnering with local non-profits to explain the importance of food waste prevention.

Economic

The Love Food Not Waste program has developed a market for food waste in Eugene, with seven local retailers selling the compost.

The city provides environmental education on sustainable materials management and healthy soils to over 10,000 students each year through the project.
With the Doña Juana Landfill Gas to Energy project, Bogotá is capturing landfill biogas and turning it into electricity delivered to residents via the national grid. While the city had been capturing and destroying methane from landfill waste since 2009, this past year it became the first Colombian city to go a step further and create electricity from this waste. The process is undertaken at the landfill’s plant, which boasts one of the largest biogas systems in the country. The plant has a capacity of 30 MW of electricity, operating 24 hours a day, seven days a week. The project reduces CO₂ emissions by 900,000 tons per year, and, by 2018, the city plans to construct two additional plants, further increasing the production of biogas and decreasing CO₂ emissions.

In addition to reducing greenhouse gas emissions, the project has an innovative social component. Twenty-four percent of the proceeds from the sale of carbon emission reduction credits and 4% of electricity sales are allocated to social investment in surrounding communities. Projects constructed with this funding include kindergartens, a multipurpose community center, pedestrian paths, and basic sanitation infrastructure, among other initiatives.
In 2015, Hong Kong constructed its first Community Green Stations as part of the city’s 10-year plan to reduce waste per capita by 40% in 2022. Currently being rolled out in each of the city’s 18 districts, Community Green Stations serve as facilities for collecting recyclables and sparking behavioral change by teaching residents about waste separation and segregation. Institutionalizing recycling practices today not only reduces emissions from waste generation, but will also help save residents money in the future, as Hong Kong plans to introduce a pay-as-you-throw waste system in the coming years.

The Community Green Stations are built as low-carbon structures, using green building technologies and materials such as recycled timber, skylights, and solar panels to reduce their CO₂ emissions. Located on unused public land, the stations also bring activity into otherwise disregarded areas, helping to facilitate community engagement while also promoting recycling. In all, these stations signify specific, targeted, and tangible actions Hong Kong is taking to reduce waste and usher in a greener mindset among residents.

→ Hong Kong is diverting waste from landfill and reducing CO₂ emissions using its Community Green Stations, which double as recycling and education centers.

CITY: HONG KONG

Recycling Centers Cut Waste and Spur Behavior Change

17k TONS OF CO₂ IS ESTIMATED TO BE REDUCED PER YEAR BY DIVERTING RECYCLABLES FROM LANDFILL AND INTO COMMUNITY GREEN STATIONS

THE CHALLENGE

Hong Kong is facing an urgent crisis, with the city’s per capita waste generation rate at nearly 1.35 kg per day, and landfill forecasted to be exhausted within a few years. Furthermore, waste management accounts for about 5% of the city’s CO₂ emissions. To address these issues, Hong Kong is constructing Community Green Stations that serve as drop-off centers for recyclables and a place to increase awareness of waste separation and segregation.

CO-BENEFITS

Environmental

Each Community Green Station is designed to process up to 750 metric tons of recyclables annually, all of it diverted from landfill.

Social

A Community Green Station in the Sha Tin district has increased the area’s recycling coverage from 56% to 92% of the population, while providing new green employment opportunities.

Economic

Ninety-seven percent of materials used to construct the Community Green Stations are sourced locally, supporting the economy.

At the Sha Tin Community Green Station residents not only recycle their goods, but can also take workshops on, for instance, making art from recycled glass cutlets.

In 2015, Hong Kong constructed its first Community Green Stations as part of the city’s 10-year plan to reduce waste per capita by 40% in 2022. Currently being rolled out in each of the city’s 18 districts, Community Green Stations serve as facilities for collecting recyclables and sparking behavioral change by teaching residents about waste separation and segregation. Institutionalizing recycling practices today not only reduces emissions from waste generation, but will also help save residents money in the future, as Hong Kong plans to introduce a pay-as-you-throw waste system in the coming years.

The Community Green Stations are built as low-carbon structures, using green building technologies and materials such as recycled timber, skylights, and solar panels to reduce their CO₂ emissions. Located on unused public land, the stations also bring activity into otherwise disregarded areas, helping to facilitate community engagement while also promoting recycling. In all, these stations signify specific, targeted, and tangible actions Hong Kong is taking to reduce waste and usher in a greener mindset among residents.
Launched in 2015, Salvador’s Environmental Recovery Program of the Canabrava Park is reforesting an old 52,000 m² outdoor dump that received 22 million tons of waste in the last year, while transforming the area into a new ecosystem and a much-needed green space for the underprivileged neighborhood. The Brazilian city’s program is planting 20,000 trees native to the Atlantic Forest biome, and using sludge from the city’s sewage, treated by anaerobic digestion, and biosolids from an industrial wastewater plant as fertilizer. Consequently, the project is a measure for CO₂ sequestration and reduction, as well as local temperature control.

The program is a partnership with the private sector, where different parties plant and maintain different sections of the park, creating ownership of the program. So far, two large plantations have been planted with the assistance of 300 participants, including environmental engineering students from the local university, and inhabitants of the surrounding areas. The program has encouraged the planting of even more trees, with a goal to reach 100,000 across the city in the coming years.

Locals and students in Salvador are planting 20,000 native species as part of the Environmental Recovery Program of the Canabrava Park, beautifying an old waste dump and using treated sludge as fertilizer.

CITY: SALVADOR

Tree Planting Project

Sequesters and Reduces CO₂ Emissions

"""

TONS OF CO₂ EMISSIONS REDUCED ANNUALLY BY USING SLUDGE FOR FERTILIZER

THE CHALLENGE

Due to years of unregulated waste disposal, Canabrava Park is severely degraded, unable to sequester CO₂ emissions, which increases the local temperature and spreads disease. Furthermore, approximately 8% of Salvador’s greenhouse gas emissions are the result of waste, 59% from wastewater plants. The Environmental Recovery Program is transforming the area by planting native trees and using treated sludge as fertilizer, capturing greenhouse gases, improving the local climate, and providing green spaces to one of the poorest neighborhoods in the city.

CO-BENEFITS

- **Environmental**
 It has been estimated that approximately 2.8 million tons of CO₂ will be captured over 20 years by trees planted under the project.

- **Social**
 The Environmental Recovery Program of the Canabrava Park provides a new meeting place for the extremely dense and underprivileged neighborhood, where there are otherwise few leisure options and green spaces.

- **Health**
 Reforestation of the park will reduce public health risks for residents in the area, such as respiratory diseases, that are associated with an open-air garbage dump.

As part of the program, students learn about the rehabilitation of degraded areas, sequestration of CO₂ emissions, and remediation, among other topics.
Cape Town is recycling its old wheeled garbage collection bins, or “wheelie bins,” into new ones, diverting waste from landfill and adopting the concept of a circular economy.

With increased urbanization and population growth in Cape Town, waste sent to landfill is growing, as is demand for city services. Therefore, diverting as much waste from landfill as possible is a city priority. The Fifty/50 Wheelie Bin program is a smart and targeted effort to achieve these goals, as recycling old wheelie bins into new bins not only diverts waste from landfill but lowers costs and reduces lifecycle CO₂ emissions.

Co-Benefits

- **Environmental**
 A 63% reduction in global warming potential, which is the heat trapped in the atmosphere by a given greenhouse gas, has been predicted using the program’s recycled bins versus virgin HDPE.

- **Social**
 Twenty-two new jobs have been created in the manufacturing of Fifty/50 Bins.

- **Economic**
 The city has saved nearly $160,000 under the program, as each Fifty/50 bin costs approximately $26.85 as opposed to $28.70 for each 100% virgin HDPE bin.

Cape Town is embarking on a circular approach to waste management with its Fifty/50 Wheelie Bin.
ADAPTATION PLANS & ASSESSMENTS

PARIS
Adaptation Strategy
Secures Crucial Resources
P. 43

DUBAI
Decision Support System Sends Extreme Weather Warnings
P. 47

BOLOGNA
Bottom-up Plan
Protects Against Rain, Drought, and Heat
P. 45

TAOYUAN
New Water Sourcing for Farm Productivity
P. 41
The solutions in the Adaptation Plans & Assessments sector showcase how targeted risk assessments and plans can make cities more resilient and adaptable for future climate changes, such as extreme weather, sea level rise, and increased temperatures, while at the same time increasing recreational opportunities and providing significant social benefits to city residents.
New York City’s Resilient Neighborhoods Study was launched in 2013 as a way to develop locally tailored strategies for land use and zoning changes that are responsive to the coastal hazards the city faces now and in the future. Ten studies were completed across a range of coastal neighborhoods in the city which analyzed damage from Hurricane Sandy; risks from coastal storms, including 10-, 50-, and 100-year storms; flood elevations; wave threats; future floodplains; and sea level rise. Information from these studies will help shape how and where development occurs on vulnerable coastal land and protect the 71,500 buildings currently located along these shorelines.

In addition, the city is producing a web-based mapping tool for each study area, informing property owners about the current and future flood risks in their neighborhood, and enabling them to make better investments in resilient infrastructure. The city hopes the recommendations created from this study will influence the future growth and development of these 10 neighborhoods, as well as districts across New York City’s 837 km of coastline that are at risk from flooding and sea level rise.
CITY: TAOYUAN

New Water Sourcing for Farm Productivity

→ Taoyuan is securing its water supply and agricultural productivity from rising temperatures and decreasing rainfall by utilizing new sources of water.

Released in 2015, Taoyuan’s Drought Resistance Strengthening and Diverse Water Sources Regulation Plan is better managing scarce water resources in the Taiwanese city by utilizing existing supplies, such as ponds and wells, and developing new supplies, such as deep groundwater, subsurface flow, and reclaimed water. The plan aims to increase the city’s water supply by nearly 400,000 m³, accounting for 33% of the current daily tap water usage, and source 26,000 m³ of daily tap water with reclaimed water.

These innovative strategies allow the city to maintain existing water scheduling polices, most importantly those directed at agricultural irrigation, which in turn provides Taoyuan with the ability to maintain 360 km² of rice planting area and prevent hundreds of millions of dollars in lost commerce, trade, and employment. In addition to maintaining the agricultural chain from planting to sales, the plan is expected to improve the local microclimate, stabilize the food chain, and sequester carbon via the water storage capacity of rice cultivation.

CO-BENEFITS

Environmental
The plan will enhance aquatic ecosystems by improving existing ponds and constructing new ones.

Social
As a new industry in the city, reclaiming water will create new job opportunities for residents.

Economic
It is estimated that the plan will save almost $45 million in compensation for agricultural irrigation suspension, as well as avoid affecting nearly $700 million in output value of industry and commerce.

Health
During water supply suspensions, internal pressure on pipes causes sewage to leak into drinking water, resulting in illness. Reducing the risk of disruption of water supply, and therefore contamination, will sustain people’s hygiene and health.

A water recycling plant constructed under the plan reduces competition for water between farmers and residents and improves quality of life for both.
In 2015, Paris implemented its Adaptation Strategy, a framework unanimously approved by the Paris City Council, aiming to adapt to climate change risks and their impacts on the city’s residents and resources. The strategy sets out four priority areas: protecting Parisians against extreme climate events; ensuring water, food, and energy supply; living with climate change; and fostering new lifestyles and boosting solidarity. As such, 30 goals and 35 actions have been identified and are now under implementation, monitored continuously. Such actions include securing the city’s food supply, aiming to reach 30 hectares of urban agriculture by 2020; monitoring how much of the city will be impacted by power failure in case of 100-year river flood; and increasing the area and length of the city’s cooling pathways during heat waves. Also helping Parisians cool down during extreme heat, the strategy ensures that all residents live within a seven-minute walk of a cool place and mandates that city parks remain open 24 hours a day during heat spells.

The comprehensive Paris Adaptation Strategy is transforming the French capital into a climate-resilient city, focusing on securing resources and protecting the well-being of residents.

In 2015, Paris implemented its Adaptation Strategy, a framework unanimously approved by the Paris City Council, aiming to adapt to climate change risks and their impacts on the city’s residents and resources. The strategy sets out four priority areas: protecting Parisians against extreme climate events; ensuring water, food, and energy supply; living with climate change; and fostering new lifestyles and boosting solidarity. As such, 30 goals and 35 actions have been identified and are now under implementation, monitored continuously. Such actions include securing the city’s food supply, aiming to reach 30 hectares of urban agriculture by 2020; monitoring how much of the city will be impacted by power failure in case of 100-year river flood; and increasing the area and length of the city’s cooling pathways during heat waves. Also helping Parisians cool down during extreme heat, the strategy ensures that all residents live within a seven-minute walk of a cool place and mandates that city parks remain open 24 hours a day during heat spells.

The comprehensive Paris Adaptation Strategy is transforming the French capital into a climate-resilient city, focusing on securing resources and protecting the well-being of residents.

In 2015, Paris implemented its Adaptation Strategy, a framework unanimously approved by the Paris City Council, aiming to adapt to climate change risks and their impacts on the city’s residents and resources. The strategy sets out four priority areas: protecting Parisians against extreme climate events; ensuring water, food, and energy supply; living with climate change; and fostering new lifestyles and boosting solidarity. As such, 30 goals and 35 actions have been identified and are now under implementation, monitored continuously. Such actions include securing the city’s food supply, aiming to reach 30 hectares of urban agriculture by 2020; monitoring how much of the city will be impacted by power failure in case of 100-year river flood; and increasing the area and length of the city’s cooling pathways during heat waves. Also helping Parisians cool down during extreme heat, the strategy ensures that all residents live within a seven-minute walk of a cool place and mandates that city parks remain open 24 hours a day during heat spells.
In 2013, the neighboring cities of Eugene and Springfield, Oregon, conducted a Climate and Hazards Vulnerability Assessment, which evaluated the local impacts likely to result from future climate change, in addition to impacts from existing hazards. The process evaluated 12 essential community sectors, such as drinking water, electricity, transportation, and stormwater, and scored them based on their adaptive capacity. Results indicated, for example, that housing and public safety are the least adaptive sectors, and that drinking water, transportation, and public safety should be considered for prioritized funding. The assessment also showcased the interdependencies between systems and the nature and magnitude of vulnerabilities.

Lessons learned from the Vulnerability Assessment were used to develop numerous strategies to reduce risk from climate change and natural hazards, such as securing alternative water sources, as well as creating updates to floodplain maps. These updates are now contained within the new 2015 Eugene/Springfield Multi-Jurisdictional Natural Hazards Mitigation Plan and being actively implemented. After taking care to ensure their method is replicable and sharable, Eugene and Springfield hope other cities can utilize and learn from their Vulnerability Assessment.

Eugene and Springfield have produced a detailed and replicable assessment of how climate change will impact essential urban systems, and lessons learned have shaped a new mitigation plan.

In 2013, the neighboring cities of Eugene and Springfield, Oregon, conducted a Climate and Hazards Vulnerability Assessment, which evaluated the local impacts likely to result from future climate change, in addition to impacts from existing hazards. The process evaluated 12 essential community sectors, such as drinking water, electricity, transportation, and stormwater, and scored them based on their adaptive capacity. Results indicated, for example, that housing and public safety are the least adaptive sectors, and that drinking water, transportation, and public safety should be considered for prioritized funding. The assessment also showcased the interdependencies between systems and the nature and magnitude of vulnerabilities.

Lessons learned from the Vulnerability Assessment were used to develop numerous strategies to reduce risk from climate change and natural hazards, such as securing alternative water sources, as well as creating updates to floodplain maps. These updates are now contained within the new 2015 Eugene/Springfield Multi-Jurisdictional Natural Hazards Mitigation Plan and being actively implemented. After taking care to ensure their method is replicable and sharable, Eugene and Springfield hope other cities can utilize and learn from their Vulnerability Assessment.
Under the Bologna Local Urban Environment Adaptation Plan for a Resilient City (BLUE AP) project, the northern Italian city utilized an active, bottom-up participatory process to create a local climate profile, which analyzes the municipality’s climate vulnerabilities, a risk assessment mapping, and, ultimately, an adaptation plan for the next decade. Goals of the plan, many of which are underway through pilot programs, include the creation of more than 28,000 m² and 15,000 m² of semi-permeable and permeable surfaces throughout Bologna and cultivating 30 hectares of vegetable gardens around the city by 2025.

Sixty meetings with at least 500 participants were held during the project in order to engage citizens and bring them into the decision-making process. The city also created working sessions on five main topics, including greening, agriculture and garden, unconventional weather events, permeability projects, and economic development of the city area, where stakeholders from public, private, and civic organizations could weigh in on their area of expertise and contribute to the design and development of the local climate profile, risk map, and ultimate adaptation plan.

Bologna has created a local climate profile, risk assessment, and 10-year adaptation plan based on extensive community engagement in order to safeguard the Italian city from heavy rain, drought, and extreme heat.

Bottom-up Plan Protects Against Rain, Drought, and Heat

Under the Bologna Local Urban Environment Adaptation Plan for a Resilient City (BLUE AP) project, the northern Italian city utilized an active, bottom-up participatory process to create a local climate profile, which analyzes the municipality’s climate vulnerabilities, a risk assessment mapping, and, ultimately, an adaptation plan for the next decade. Goals of the plan, many of which are underway through pilot programs, include the creation of more than 28,000 m² and 15,000 m² of semi-permeable and permeable surfaces throughout Bologna and cultivating 30 hectares of vegetable gardens around the city by 2025.

Sixty meetings with at least 500 participants were held during the project in order to engage citizens and bring them into the decision-making process. The city also created working sessions on five main topics, including greening, agriculture and garden, unconventional weather events, permeability projects, and economic development of the city area, where stakeholders from public, private, and civic organizations could weigh in on their area of expertise and contribute to the design and development of the local climate profile, risk map, and ultimate adaptation plan.

Bottom-up Plan Protects Against Rain, Drought, and Heat

Under the Bologna Local Urban Environment Adaptation Plan for a Resilient City (BLUE AP) project, the northern Italian city utilized an active, bottom-up participatory process to create a local climate profile, which analyzes the municipality’s climate vulnerabilities, a risk assessment mapping, and, ultimately, an adaptation plan for the next decade. Goals of the plan, many of which are underway through pilot programs, include the creation of more than 28,000 m² and 15,000 m² of semi-permeable and permeable surfaces throughout Bologna and cultivating 30 hectares of vegetable gardens around the city by 2025.

Sixty meetings with at least 500 participants were held during the project in order to engage citizens and bring them into the decision-making process. The city also created working sessions on five main topics, including greening, agriculture and garden, unconventional weather events, permeability projects, and economic development of the city area, where stakeholders from public, private, and civic organizations could weigh in on their area of expertise and contribute to the design and development of the local climate profile, risk map, and ultimate adaptation plan.

Bologna’s adaptation plan will help the city’s waterways remain resilient to heavy rain and flooding.
Born out of the city’s 2014 Climate Action Plan, Climate Ready Boston was launched in 2015 as an initiative to develop resilient solutions to the impacts of long-term climate change. The initiative has three key deliverables: consensus on updated projections on the impacts of climate change; an integrated vulnerability assessment of these impacts, including identification of neighborhoods, properties, and infrastructure assets that are most at risk; and specific resilience strategies and a guiding roadmap that will reduce the city’s vulnerabilities and prioritize implementation. Based on data and stakeholder engagement, these strategies will include a portfolio of solutions and interventions, such as policies, regulations, financial incentives, and design standards.

The initiative has not only provided the city with physical damage estimates, such as the cost of repairing buildings and infrastructure, but also costs to the community, at-risk individuals, business operations, and social networks. This has been possible through comprehensive cross-sector partnerships, which have funded the program, supplied data, and discussed and implemented recommendations. These partnerships include more than 30 stakeholder committees, including city, state, and private sector agencies and community groups, that participate on an advisory level.

The initiative has not only provided the city with physical damage estimates, such as the cost of repairing buildings and infrastructure, but also costs to the community, at-risk individuals, business operations, and social networks. This has been possible through comprehensive cross-sector partnerships, which have funded the program, supplied data, and discussed and implemented recommendations. These partnerships include more than 30 stakeholder committees, including city, state, and private sector agencies and community groups, that participate on an advisory level.

Boston has taken a data- and stakeholder-driven approach to climate adaptation, creating Climate Ready Boston in an effort to develop projections, assess risks, and create resilience strategies.

Climate Ready Boston was launched to start planning for end-of-century effects of climate change, one of the priorities of the city’s 2014 Climate Action Plan.
Dubai launched its Decision Support System for Marine and Waterways Management in 2012, the first of its kind in the region, reducing climate change-induced risks to the coastal zone. The system consists of an integrated suite of meteorological, hydrodynamic, and wave models, combined with real-time data management and Web-based tools, creating a coastal monitoring and forecasting system. The system has been successful in predicting extreme weather events 24 hours in advance, delivering data and decision support to the municipality and public users on everything from sea level rise; change in wave frequency, height, and direction; increased precipitation rates; coastal erosion; and increased sea water acidity. Not just providing actionable, real-time information, the system has allowed for the creation of a comprehensive historical database, as well as a coastal inundation tool, capable of forecasting and mapping the extent of coastal flooding. By collecting weather and oceanographic information, the municipality is able to account for future risks of climate change in its infrastructure planning and design for the Dubai coastline.

Dubai created a Decision Support System using the latest weather forecasting technology in order to predict extreme weather events and protect the city’s coastline.

VISITORS TO THE DUBAI COAST WEBSITE IN 2015, BENEFITING FROM THE WEATHER INFORMATION AVAILABLE FROM THE SYSTEM

THE CHALLENGE

The Dubai coastline faces many risks because of climate change. Sea level is forecast to rise a minimum of 4 mm annually, while storm events are expected to be more frequent and severe. The Decision Support System for Marine and Waterways Management has integrated the latest technology to forecast extreme weather events and flooding, enabling the city to better respond and adapt to these climate change challenges.

CO-BENEFITS

Environmental
In addition to forecasting extreme weather events, the system also records data for coastal environmental indicators, including turbidity and algal blooms, quantifying these events in order to mitigate their impacts in the future.

Social
The system is designed to help protect and maintain cultural heritage features along the coastline through their identification on maps and targeted monitoring.

Economic
Data produced by the system is sold to developers and other stakeholders to assist in commercial planning.

Health
Residents avoid injury and death via the provision of severe weather warnings from the system.

The support system minimizes property damage and ensures optimal use of Dubai’s coastal zone for fishing, tourism, recreation, and other activities.
Completed in 2016, the Climate Change Vulnerability Assessment of Belo Horizonte has identified and quantified the city’s preparedness and ability to cope with the adverse effects of climate change, as the first step towards a climate adaptation plan. The assessment was based on a vulnerability index, made up of all climate change-related information available for the city, including landslides, floods, heat waves, and incidence of dengue fever, in the form of high-resolution georeferenced maps and basic statistics. The assessment identified four hotspots in the city with a vulnerability index in the 75th percentile, vulnerable to a range of climate change impacts. It also indicated that the area of such hotspots has increased over time and now covers 88 km², or 27% of the city area.

The assessment was integrated with city-level urban planning, driving public and private investment in resilient urban infrastructure, public health, and adaptive measures. By gaining a sound and quantified understanding of vulnerability and providing guidelines for the prioritization of investments, the assessment will lay the groundwork for projects to improve the resilience of vulnerable areas and social groups, while improving the efficiency of public spending.

By assessing the city using a quantified vulnerability index, Belo Horizonte has identified areas most in need of adaptation investment, protecting infrastructure and residents from climate change.

THE CHALLENGE
Belo Horizonte is experiencing an increased magnitude and frequency of extreme weather events and changes in precipitation and temperature patterns, causing landslides, floods, heat waves and dengue fever. Furthermore, exposure to climate change-related impacts is not distributed equally across the city. The Vulnerability Assessment has provided a foundation to bring adaptive measures into urban planning, prioritizing investments in order to mitigate climate change impacts and vulnerability inequality.

CO-BENEFITS

- **Environmental**
 The assessment provides evidence for the implementation of adaptation measures, such as investments in public transport, increase of tree coverage, ecological corridors, and green infrastructure.

- **Social**
 The project aims to provide decision-makers with evidence for developing public and private investment in low-income areas disproportionately affected by climate change impacts.

- **Economic**
 With advanced planning, the assessment expects to avoid future economic losses, such as damages to infrastructure and assets, loss of livelihoods, and emergency expenditures following extreme events.

- **Health**
 The identification of dengue fever hotspots will enhance the effectiveness of actions aimed to control the expansion of the disease.

Vulnerability Assessment Quantifies Risk

By reducing CO₂ by 20% by 2030 as part of the city’s climate change policy, with which the assessment is integrated.

The assessment will lead to improvements in vulnerable communities that are more exposed to the risks of climate change.
In 2014, Toronto unveiled Resilient City – Preparing for a Changing Climate, a policy paper that lays the groundwork for comprehensive adaptation action. The report outlines how climate change resilience can be integrated into decision-making and coordination of city operations and services. Furthermore, it proposes specific recommendations, such as the creation of a geospatial risk assessment tool that tracks data like heat vulnerability, locations of flood zones, locations of previously flooded areas and electrical outages, and areas of heavy tree damage from different departments and utilities, recognizing interdependencies between city departments.

Keeping with the theme of coordination and collaboration, the report underpinned the creation of the cross-sectoral Resilient City Working Group (RCWG), made up of 16 city organizations, plus several outside agencies, including utilities and transit agencies. Collectively these organizations work to develop and support a broad range of new actions to address climate change impacts on infrastructure, services, and city operations in a coordinated and cohesive way to ensure that Toronto is prepared for and capable of adapting nimbly to the effects of climate change.

Toronto hopes that the adaptation measures recommended by this report will prevent more illness and death from extreme heat, poor air quality, and vector-borne disease.

Toronto was recognized by the Grosvenor Group real estate investment company as one of the most resilient cities in the world for real estate investment.

© Toronto and Region Conservation (TRCA)
Rio de Janeiro engaged citizens, municipal employees, and private stakeholders in creating its resilience strategy, identifying climate shocks in the city, and creating targeted measures to reduce the impacts.

The Rio Resilience Strategy was born in 2016 as a guide for Rio de Janeiro to become a global leader in resilience by 2035. Developed with the support of a group of sector-specific experts, interviews with 39 city departments, and workshops with private sector stakeholders, the strategy defines six key goals: understand and mitigate the impacts of severe weather; prepare the city to respond to extreme weather events; cultivate green, cool, and safe urban spaces; provide high-quality basic services to all citizens; promote a circular and low-carbon economy; and increase the overall resilience and cohesion of the city and its people.

The specific actions that will help Rio de Janeiro achieve these goals address flooding, drought, lack of access to clean water, and securing a safer supply of energy by decreasing dependence on hydropower. The city hopes that this strategy, underpinned by targeted stakeholder engagement, will serve as a necessary intermediary between the city’s short-term goals, as set forth in the Strategic Plan 2017-2020, and long-term roadmap, Vision Rio 500.

The Challenge

Climate impacts, such as strong winds and rain, sea level rise, and flooding, combined with increased heat waves and heat islands, threaten Rio de Janeiro’s residents and infrastructure. The Rio Resilience Strategy serves as a guiding document for how, in both the short and long term, the city can protect itself from these challenges and transform into a global leader in urban resilience measures.

Co-Benefits

- **Environmental**
 - Improved management of water resources, particularly sanitation, will reduce pollution in waterways, improving local ecosystems.

- **Social**
 - The city aims to create and implement a “Massive Online Open Course (MOOC) on Urban Resilience,” as part of the plan, educating the public on the importance of resilience and climate action.

- **Economic**
 - By calling for the implementation of circular economic measures, the plan will help shape a new market for compost and solid waste, which have immense potential for job creation.

- **Health**
 - By reducing temperatures in the city through the introduction of green and cool spaces, the plan aims to reduce epidemics and pandemics such as dengue fever, Chikungunya, and Zika.

Research shows that without preparing for climate change, approximately 30 km² of Rio de Janeiro would be in danger of seawater intrusion.
The Adaptation in Action sector highlights solutions that ensure urban resilience by protecting vulnerable infrastructure from sea level rise and storm surges, improving water supply management, and redesigning streetscapes to cope with future climate hazards.
Acknowledging future risks of reduced water availability, Hong Kong has adopted a Total Water Management Strategy to enhance water security and reliability. The project focuses not only on improving and expanding water resources but curbing demand as well.

To reduce demand, the city is reducing water loss by repairing and upgrading water mains, lowering leakage rates. The city also encourages water conservation methods through collaboration, active participation, and mutual commitments between public, private, and civic sectors. In terms of supply, Hong Kong is expanding its already world-leading sourcing strategies. While the city has used seawater for toilet flushing for many years, as part of the Total Water Management Strategy, this technique is now applied to 85% of the population as of 2015, saving 27 million m3 of freshwater and accounting for 27% of Hong Kong’s target for the 2020s. Hong Kong is exploring further alternative resources for the remainder of the target including reclaimed water, recycled grey water, and desalinated water.

→ The Asian megacity of Hong Kong is capitalizing on existing infrastructure and seawater to withstand future droughts caused by climate change.

CITY: HONG KONG

Water Security through Supply and Demand Management

The Asian megacity of Hong Kong is capitalizing on existing infrastructure and seawater to withstand future droughts caused by climate change.

Acknowledging future risks of reduced water availability, Hong Kong has adopted a Total Water Management Strategy to enhance water security and reliability. The project focuses not only on improving and expanding water resources but curbing demand as well.

To reduce demand, the city is reducing water loss by repairing and upgrading water mains, lowering leakage rates. The city also encourages water conservation methods through collaboration, active participation, and mutual commitments between public, private, and civic sectors. In terms of supply, Hong Kong is expanding its already world-leading sourcing strategies. While the city has used seawater for toilet flushing for many years, as part of the Total Water Management Strategy, this technique is now applied to 85% of the population as of 2015, saving 27 million m3 of freshwater and accounting for 27% of Hong Kong’s target for the 2020s. Hong Kong is exploring further alternative resources for the remainder of the target including reclaimed water, recycled grey water, and desalinated water.
CITY: CHICAGO

Adsorptive Playgrounds Foster Social Cohesion

Revitalizing school lots to capture stormwater reduces the risk of flooding in Chicago’s poorest neighborhoods, while fostering community engagement.

Launched in 2013, Space to Grow has revolutionized everyday asphalt school lots into green stormwater infrastructure playgrounds that serve as educational amenities and community gathering spaces. The project targets low-income areas facing flood risks as well as social and economic challenges.

The design focuses on capturing stormwater, with the city’s current infrastructure unable to withstand the new rainfall patterns caused by climate change. By redesigning playgrounds, the project aims to reduce flood risk in the surrounding school neighborhoods, each designed to manage a 24-hour, 100-year storm, exceeding requirements in Chicago’s Stormwater Management Ordinance. At the same time, outdoor classrooms, vegetable gardens, and sporting facilities promote environmental education, social engagement, and physical activity. Access is provided to families and the community outside school hours, fully utilizing the new spaces. Overall, six school lots have been transformed by Space to Grow and 28 more are expected to be completed by 2019.

THE CHALLENGE

With climate change causing new rainfall patterns, flooding risks for poor communities have increased to new levels. In the last eight years, the city has experienced four storms exceeding the rainfall amount of a “10-year-storm.” Space to Grow mitigates the problem by providing green infrastructure to soak up stormwater.

CO-BENEFITS

- **Environmental**
 Damage from flooding events and land subsidence are expected to be reduced.

- **Social**
 With 90% of the students served by the project from low-income families, Space to Grow fosters social connections and builds cohesion within communities by providing new and alternative meeting points.

- **Economic**
 Due to the implementation of Space to Grow, property values in surrounding neighborhoods are expected to increase.

- **Health**
 Running tracks, permeable turf fields, and basketball courts aim to reduce obesity.
Embracing the River to Combat Flooding

→ By creating more space for the Waal River, Nijmegen is proving that targeted adaptation not only improves resilience but also brings social and economic benefits.

Faced with increased risk of flooding, the Dutch city of Nijmegen has adapted by giving more room to the Waal River, while protecting nearby natural habitats and providing recreational space. In 2012, the city began manipulating the river and its shores at 30 key locations, moving the main dike 350 m inland, and digging an extensive new river channel parallel to the original. To overcome this new channel, the Waal Bridge was extended and three new bridges were created. By its completion in 2016, the project succeeded in achieving a 35 cm river height reduction instead of the 27 cm target, and during high river tides, one-third of the total amount of water is discharged through the new ancillary channel.

While the primary goal of the project, dubbed Room for the River Waal, is to reduce the river level and prevent flooding of homes and businesses, the recreation areas created by the project are improving quality of life for residents and visitors as well. Showcasing the far-reaching importance of the project, positive effects are even noticed 20 km upstream in Duisburg, Germany.

8 cm
MORE RIVER HEIGHT REDUCTION WAS ACHIEVED THROUGH THE PROJECT THAN INITIALLY PLANNED

THE CHALLENGE
The narrow watershed of the Waal River creates a bottleneck in Nijmegen that has long been prone to flooding. Rather than blocking the river with high levies, the city chose to embrace the water, creating a new river channel to help manage water flows and prevent flooding to nearby homes and businesses.

CO-BENEFITS

Environmental
As part of the project, 80 hectares of agricultural land were transformed into a natural reserve area.

Social
Room for the River Waal ensures the safety of at least 250,000 residents who live behind the dikes.

Economic
An environmental assessment and a social cost-benefit analysis have been made for his project, indicating a more than $295 million positive effect.

Health
Recreational facilities created as part of the project encourage healthy activities like hiking, cycling, and rowing.

The project has transformed 250 hectares marginal farmland into a wilderness reserve in the heart of the city, providing opportunities for recreation, festivals and leisure at an estimated 45,000 visitors yearly.
Implemented in 2016, the Gentilly Resilience District project is transforming streets, parks, schoolyards, open lots, and homes by facilitating the construction of green roofs, bioswales, and pervious pavements throughout Gentilly, a particularly vulnerable, mixed-income neighborhood. With flooding and slow land subsidence posing a significant threat to the city, the aim is to capture and store rainfall in the urban environment. The project adopts a suite of approaches, acknowledging that one solution is not enough to ensure a secure future for New Orleans in a changing climate.

The initiatives under the Gentilly Resilience District project not only capture rainfall but help to beautify neighborhoods, encouraging more recreational activities and improving walkability. The project also benefits the significant portion of city residents who are unemployed, in particular the 52% of African-American males of working age, with new job and training opportunities in water management specifically targeting this group.

CITY: NEW ORLEANS

Capturing Rainwater Curbs Flooding Events

→ In New Orleans, the Gentilly Resilience District project is transforming the city’s approach of urban water management while beautifying neighborhoods.

The Gentilly Resilience District is protecting a vulnerable New Orleans neighborhood from future extreme weather events.
The Peripheral Garden of Medellín was established in 2012 in response to the risks of urban growth in uphill neighborhoods. Covering more than 65 hectares, the garden features footpaths, bike lanes, and clean mobility corridors, while facilitating ecological restoration, environmental preservation, and sustainable housing. Thousands of native trees have been planted to restore ecosystems, and organic orchids have been developed to encourage new eco-businesses and preserve regional farming traditions.

Conscious of the communities that already inhabit these areas, the city included them in the process by providing employment and educational opportunities. At least 300 families are working to cultivate their food and start their own businesses, while 150 new leaders have been trained to manage their territory on the hillside. Another achievement is the establishment of the Fique Association of Pan de Azucar, consisting of 100 families with the goal to commercialize the native plant.

Medellín is tackling hillside urban growth and protecting these areas from flooding and landslides by adopting a socially inclusive approach to restoring ecosystems.

The Peripheral Garden of Medellín was established in 2012 in response to the risks of urban growth in uphill neighborhoods. Covering more than 65 hectares, the garden features footpaths, bike lanes, and clean mobility corridors, while facilitating ecological restoration, environmental preservation, and sustainable housing. Thousands of native trees have been planted to restore ecosystems, and organic orchids have been developed to encourage new eco-businesses and preserve regional farming traditions.

Conscious of the communities that already inhabit these areas, the city included them in the process by providing employment and educational opportunities. At least 300 families are working to cultivate their food and start their own businesses, while 150 new leaders have been trained to manage their territory on the hillside. Another achievement is the establishment of the Fique Association of Pan de Azucar, consisting of 100 families with the goal to commercialize the native plant.
Raise Shorelines Citywide began in 2014, a project specifically designed to address sea level rise rather than storm surge. New York City is identifying vulnerable shorelines with comprehensive and detailed analyses, including data on daily high tide inundation, calculated using localized sea level rise projections from the New York City Panel on Climate Change (NPCC) and a wave atlas produced specifically for this project.

Using the 90th percentile of projections for the 2050s produced by NPCC, projects were identified that will fortify vulnerable stretches of shoreline to prevent inundation of buildings and infrastructure in a future where the highest average level of the New York Harbor could rise by 81 cm. Analysis of New York City’s more than 965 km of shoreline led to the selection of 15 projects that will make the city’s coastline more resilient to the risks posed by sea level rise.

Innovative Data Analysis Leads to Coastline Protection

Addressing the risk of rising sea levels, New York City implemented its Raise Shorelines Citywide project, which, through a comprehensive analysis of its coastlines, is protecting inhabitants and their livelihoods.

© Jeffrey Barry
The Wuhan Sponge City Programme focuses on reducing waterlogging and increasing water quality via the ecological remediation of existing urban water systems and the construction of blue and green spaces to capture and store rainwater. The first phase of the project, from 2015 to 2017, will see the development of 389 so-called sponge projects, such as urban gardens and waterbodies in parks, roads, residential communities, and commercial and public buildings. These will cover 38 m² of the city and provide habitat for plants and wildlife.

By the end of the pilot period, two new rainwater pump stations will have been constructed, providing at least 25% of the city’s water. Furthermore, 13 ports and channels will be repaired, drain pipelines will be improved, and at least one lake will be ecologically restored. Overall, the project is expected to reduce the occurrence of severe waterlogging events from once annually to once in 10 years in the pilot zone, a strong start to adapting the city to climate change.

The Chinese megacity Wuhan has launched a 15-year program using green and blue sponge projects to prepare for increased waterlogging caused by rapid urbanization and natural disasters.

CITY: WUHAN

Waterlogging Prevented by Sponge Infrastructure

The Wuhan Sponge City Programme focuses on reducing waterlogging and increasing water quality via the ecological remediation of existing urban water systems and the construction of blue and green spaces to capture and store rainwater. The first phase of the project, from 2015 to 2017, will see the development of 389 so-called sponge projects, such as urban gardens and waterbodies in parks, roads, residential communities, and commercial and public buildings. These will cover 38 m² of the city and provide habitat for plants and wildlife.

By the end of the pilot period, two new rainwater pump stations will have been constructed, providing at least 25% of the city’s water. Furthermore, 13 ports and channels will be repaired, drain pipelines will be improved, and at least one lake will be ecologically restored. Overall, the project is expected to reduce the occurrence of severe waterlogging events from once annually to once in 10 years in the pilot zone, a strong start to adapting the city to climate change.

CITIES100
In 2011, the Taiwanese city of Taoyuan initiated a project to remediate the 36.7 km Laojie River and its surrounding waterfronts in an effort to improve the river’s water quality and resilience capacities and provide green public spaces for an area that will continue to grow as a commercial and transit node. The completed first phase of the project reduced the amount of flood-prone land by 192,500 m², allowing the region to successfully ride out the flood of 2012 without major damages. In an effort to revitalize the river’s shorelines, adaptable and low-maintenance native plants were added to the area, protecting the land and making the riverfront more attractive and inviting for residents.

In 2011, the Taiwanese city of Taoyuan initiated a project to remediate the 36.7 km Laojie River and its surrounding waterfronts in an effort to improve the river’s water quality and resilience capacities and provide green public spaces for an area that will continue to grow as a commercial and transit node. The completed first phase of the project reduced the amount of flood-prone land by 192,500 m², allowing the region to successfully ride out the flood of 2012 without major damages. In an effort to revitalize the river’s shorelines, adaptable and low-maintenance native plants were added to the area, protecting the land and making the riverfront more attractive and inviting for residents.

The Laojie River remediation is one of several adaptation projects in the city seeking to conserve water bodies and increase the amount of green public space in the city. Together with other leading projects such as the restoration of the Nankan riverfront and the revitalization of Taoyuan’s city ponds, the river remediation project is helping Taoyuan climate-proof its future.
Bogotá is strategically increasing vegetation cover and removing invasive species that negatively impact the water cycle through the Chingaza-Sumapaz-Guerrero Conservation Corridor. Launched in 2014, the project is a means to ensure water security in the city, with 184.4 hectares going through a restoration process and 164.5 hectares going through a reconversion process. Sixteen micro watersheds and more than 12 municipalities were identified as critical focal points. Research is underway on plants that can absorb higher quantities of water, and vegetation cover is increasing. By buffering high mountain ecosystems, more water is able to be absorbed naturally and flow to the reservoir for storage.

Local communities are included in the planning process and encouraged to take ownership of their water resources. Through education on sustainable land management and training on risk and impact analysis, fewer pesticides are being used and pressures have been reduced on the water supply.
In 2016, Mexico City launched a “complete streets” initiative, dubbed Calle Verde, in an effort to improve drainage, add green spaces, and cultivate a safer and more attractive streetscape that caters to the needs of pedestrians, cyclists, and public transit users while better preparing the city for the effects of climate change. Consisting of both grey and green interventions, the program will repair drainage pipes under key corridors and repave streets and sidewalks with permeable pavement in order to prevent flooding during extreme weather events. Furthermore, corner extensions at intersections will improve pedestrian safety, and planting trees and green spaces will help the city manage rainwater, mitigate urban heat island effects, and serve as attractive public spaces.

The project is financed by the city’s bus rapid transit system, Metrobus, and aligns with the objectives of the larger, city-wide Comprehensive Mobility Program. As such, the project takes care to ensure that these newly renovated and redesigned streets are accessible and well-connected by adding and improving existing bicycle paths and integrating transit lines along these corridors.

Mexico City’s Calle Verde initiative combines adaptation infrastructure with improved public transit access.
CLIMATE ACTION PLANS & INVENTORIES

KAMPALA
Strategy Drives Resilient City Operations in Africa
P. 76

PARIS
Renewed Plan Advances Climate Action
P. 72

GUANGZHOU
Low-Carbon Megacity Encourages Green Growth
P. 77

TAOYUAN
Plan Seeks Behavior Change and Green Industry Growth
P. 81

SINGAPORE
Comprehensive Plan Yields Quick Results
P. 69

AUCKLAND
Collective Action Spurs Emissions Reductions
P. 68

CANBERRA
Working towards Carbon Neutral City Operations
P. 70
The Climate Action Plans & Inventories sector presents comprehensive and far-reaching plans and actions taken by cities to lower their CO₂ footprints and pursue long-term social, economic, and environmental agendas. These solutions demonstrate the strategic role that greenhouse gas emissions reduction targets can have in cities’ overall green development strategies.
Launched in 2014, Low Carbon Auckland was developed in partnership with more than 150 stakeholders in order to deliver on the city’s target to reduce CO2 emissions by 40% in 2040, while securing access to clean, efficient, and affordable energy. Based on innovative engagement and co-governance arrangements with industry, NGOs, youth, knowledge institutions, and Māori, more than 100 actions have been outlined across five areas of transformation: travel; energy use and generation; the built environment and infrastructure; zero waste; and forestry, agriculture, and natural carbon assets. So far, actions include the roll out of electric trains, expansion of the city’s cycle network, sustainable design standards for buildings, and a city-wide organic waste collection scheme, owned by different stakeholders.

The plan is based on global best practices, aiming to keep energy prices low, and including an emissions inventory developed using the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC). As the country’s first regional climate action plan, it was designed to draw on existing programs, revealing the benefits of climate actions to encourage people to move further and faster in reducing emissions.

Auckland is collaborating with a wide range of stakeholders and preparing for the low-carbon future with the help of a city-wide action plan.

Launched in 2014, Low Carbon Auckland was developed in partnership with more than 150 stakeholders in order to deliver on the city’s target to reduce CO2 emissions by 40% in 2040, while securing access to clean, efficient, and affordable energy. Based on innovative engagement and co-governance arrangements with industry, NGOs, youth, knowledge institutions, and Māori, more than 100 actions have been outlined across five areas of transformation: travel; energy use and generation; the built environment and infrastructure; zero waste; and forestry, agriculture, and natural carbon assets. So far, actions include the roll out of electric trains, expansion of the city’s cycle network, sustainable design standards for buildings, and a city-wide organic waste collection scheme, owned by different stakeholders.

The plan is based on global best practices, aiming to keep energy prices low, and including an emissions inventory developed using the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC). As the country’s first regional climate action plan, it was designed to draw on existing programs, revealing the benefits of climate actions to encourage people to move further and faster in reducing emissions.

→ Auckland is collaborating with a wide range of stakeholders and preparing for the low-carbon future with the help of a city-wide action plan.

Launched in 2014, Low Carbon Auckland was developed in partnership with more than 150 stakeholders in order to deliver on the city’s target to reduce CO2 emissions by 40% in 2040, while securing access to clean, efficient, and affordable energy. Based on innovative engagement and co-governance arrangements with industry, NGOs, youth, knowledge institutions, and Māori, more than 100 actions have been outlined across five areas of transformation: travel; energy use and generation; the built environment and infrastructure; zero waste; and forestry, agriculture, and natural carbon assets. So far, actions include the roll out of electric trains, expansion of the city’s cycle network, sustainable design standards for buildings, and a city-wide organic waste collection scheme, owned by different stakeholders.

The plan is based on global best practices, aiming to keep energy prices low, and including an emissions inventory developed using the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC). As the country’s first regional climate action plan, it was designed to draw on existing programs, revealing the benefits of climate actions to encourage people to move further and faster in reducing emissions.

→ Auckland is collaborating with a wide range of stakeholders and preparing for the low-carbon future with the help of a city-wide action plan.

Launched in 2014, Low Carbon Auckland was developed in partnership with more than 150 stakeholders in order to deliver on the city’s target to reduce CO2 emissions by 40% in 2040, while securing access to clean, efficient, and affordable energy. Based on innovative engagement and co-governance arrangements with industry, NGOs, youth, knowledge institutions, and Māori, more than 100 actions have been outlined across five areas of transformation: travel; energy use and generation; the built environment and infrastructure; zero waste; and forestry, agriculture, and natural carbon assets. So far, actions include the roll out of electric trains, expansion of the city’s cycle network, sustainable design standards for buildings, and a city-wide organic waste collection scheme, owned by different stakeholders.

The plan is based on global best practices, aiming to keep energy prices low, and including an emissions inventory developed using the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC). As the country’s first regional climate action plan, it was designed to draw on existing programs, revealing the benefits of climate actions to encourage people to move further and faster in reducing emissions.

→ Auckland is collaborating with a wide range of stakeholders and preparing for the low-carbon future with the help of a city-wide action plan.
CITY: SINGAPORE

Comprehensive Plan Yields Quick Results

With ambitious and targeted mitigation and adaptation plans, Singapore is already seeing clear results in its efforts to secure the city’s resilience and future as a global hub for green industries.

Singapore’s Climate Action Plan provides the framework for both mitigating and adapting to climate change impacts. Within three years of adoption, the plan already has seen an increase in solar power capacity, from 5.9 MW in 2011 to 33.1 MW in 2014. Furthermore, the plan includes a target of having 80% of buildings certified by Green Mark by 2030, with more than 30% already certified. Transport carbon efficiency will also improve under the plan, with the construction of 700 km of cycling paths and expansion of the rail network by 2030, putting 80% of households within a 10-minute walk of a train station.

In terms of adaptation, protection structures, such as sea walls and stone embankments, have been constructed along 70% to 80% of Singapore’s coastline. In 2011, minimum reclamation levels were raised from 3m to 4m above the mean sea level in order to build resilience to sea level rise. Singapore has also invested some $1.5 billion in building and upgrading drainage infrastructure, reducing flood-prone areas from 3,200 hectares in the 1970s to 36 hectares in 2013. In all, the plan showcases that mitigation and adaptation truly go hand in hand.

With ambitious and targeted mitigation and adaptation plans, Singapore is already seeing clear results in its efforts to secure the city’s resilience and future as a global hub for green industries.

THE CHALLENGE
As a dense and low-lying city-state, Singapore must be conscious of its energy consumption, as it is vulnerable to the impacts of climate change. The Climate Action Plan allows Singapore to use this density to its advantage, by ensuring building efficiency and low-carbon transport while at the same time prioritizing adaptive measures. Results are already showing that the plan’s dual focus on mitigation and adaptation is yielding impressive results, reducing the city-state’s environmental footprint and boosting its resilience.

CO-BENEFITS

Environmental
Under the plan the use of solar power is expected to increase to 350 MW by 2020.

Social
Residents have access to new career opportunities with the creation of approximately 60,000 jobs in green industries.

Economic
Under the Singapore’s Climate Action Plan, the green economy has expanded, boosting GDP by about $4.4 billion.

Health
The construction of bike paths provides a new and active commuting option for residents, contributing to the general health and well-being of the city.

Singapore’s efforts to reduce carbon emissions, coupled with steps taken to adapt to climate change, will ensure that the city remains a vibrant and livable place for current and future generations.
The government of the Australian capital, Canberra, has developed a holistic framework to reach zero net emissions in 2020 by, among other initiatives, going 100% renewable for electricity.

Leading by example, the Australian Capital Territory (ACT) Carbon Neutral Government Framework underpins Canberra’s target of becoming carbon neutral in its operations by 2020. Anchored by a goal of sourcing 100% of municipal energy use through renewable sources by 2020, the city is also collecting energy consumption data across government operations; holding heads of agencies accountable for meeting reduction targets; implementing sustainable work travel options, including electric vehicles, bike fleets and workplace public transport cards; and ensuring that sustainability criteria is embedded in procurement, which influences the supply chain. These actions have been implemented across the region’s multiple agencies, in 600 facilities, affecting 20,000 employees.

The plan is already seeing results, as since 2013, 44,770 metric tons of CO$_2$ emissions have been reduced from a baseline of 232,000 metric tons. By 2020, the 100% renewable energy target will have reduced electricity emissions to virtually zero, with total government emissions down by 65%. Remaining emissions sources, such as transport and natural gas, will be addressed through expansion of an electric vehicle fleet, and transitioning away from gas for temperature control in commercial buildings.

The Framework provides government employees with electric municipal vehicles in an effort to reduce the local government’s CO$_2$ emissions.
Paris' Climate Action Plan was renewed in 2012 and covers six main themes: low-energy urban planning; energy efficient and affordable housing; the service industry; low-carbon transport; sustainable consumption; and the city’s first adaptation strategy. Since 2012, specific roadmaps on housing, commercial development, and adaptation have been published, in addition to the creation of web tools for citizens. The ultimate goal of the Climate Action Plan is to achieve a 25% reduction in greenhouse gas emissions and energy consumption by 2020. By the same year, one-quarter of energy consumed in the city should be powered by renewable or recovered energy.

So far, the plan is already achieving impressive results. By 2014, 75% of energy production in Paris came from renewable sources, and by the end of 2015, 80% of the plan’s initiatives had been launched and the city had succeeded in reducing greenhouse emissions by 10%. With yearly reports released to monitor progress, Paris hopes that this large scale plan will lay the groundwork for a more resilient and climate-proof future.

Paris is working to reduce energy use and promote renewable energy generation, while preparing the city for the long-term effects of climate change.

By revising and renewing its Climate Action Plan, Paris is working to reduce energy use and promote renewable energy generation, while preparing the city for the long-term effects of climate change.

THE CHALLENGE

The Paris Climate Action Plan was initially developed in 2007 in response to heat waves, flooding, and water scarcity caused by climate change. With energy consumption expected to increase and temperatures expected to rise, the city has renewed its commitment with new measures in order to promote renewable energy generation and reduce energy use, creating a climate resilient and livable city for Parisians.

CO-BENEFITS

- **Environmental**
 So far 5,000 trees have been planted as part of the plan, increasing biodiversity.

- **Social**
 More than 55,000 housing units will be refurbished under the Paris Climate Action Plan, reducing energy consumption and saving tenants money through lower utility bills.

- **Economic**
 $1 billion was invested to retrofit housing under the plan, creating about 5,000 jobs.

- **Health**
 The plan aims to reduce atmospheric pollutants by at least 50% by 2020, improving the respiratory health of Parisians.

Under the plan, Paris aims to make bicycles a more common and popular commuting method.
In December 2015, San Diego adopted a new Climate Action Plan with bipartisan support, demonstrating that climate action can appeal to everyone, regardless of political affiliation. With this plan, San Diego aims to cut its carbon footprint in half by 2035 via five strategies: energy- and water-efficient buildings; clean and renewable energy; bicycling, walking, transit and land use; zero waste; and climate resilience. So far, 4,000 solar panel installation permits have been issued and more than 260 km of bicycle lanes have been completed, with 80 km of new or improved bike lanes planned every year. The plan aims to have 20,000 additional residential units built within walking distance to existing transit stations, and has set a target of 35% urban tree canopy cover. In terms of water, the plan’s recycling purification program includes the construction of purification facilities, pipelines, and pump stations to provide a local source of water to the city. Eventually this will replace purchases of imported water, which currently account for at least 85% of the demand.

Both Democratic and Republican city council members unanimously agree on San Diego’s Climate Action Plan, creating an innovative and bold vision for the city’s resilient future.

In December 2015, San Diego adopted a new Climate Action Plan with bipartisan support, demonstrating that climate action can appeal to everyone, regardless of political affiliation. With this plan, San Diego aims to cut its carbon footprint in half by 2035 via five strategies: energy- and water-efficient buildings; clean and renewable energy; bicycling, walking, transit and land use; zero waste; and climate resilience. So far, 4,000 solar panel installation permits have been issued and more than 260 km of bicycle lanes have been completed, with 80 km of new or improved bike lanes planned every year. The plan aims to have 20,000 additional residential units built within walking distance to existing transit stations, and has set a target of 35% urban tree canopy cover. In terms of water, the plan’s recycling purification program includes the construction of purification facilities, pipelines, and pump stations to provide a local source of water to the city. Eventually this will replace purchases of imported water, which currently account for at least 85% of the demand.
In 2011, Buenos Aires enacted the Climate Change Law in support of its Climate Change Action Plan, confirming its commitment to reducing emissions. The law enforces checks and updates of the plan every five years, the first of which occurred in 2015 and resulted in the conversion of the city’s initial emission inventories to a more accurate, robust version based on the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC).

The process of upgrading the inventories has helped the city define a new focus area of the Climate Change Action Plan for 2020. In addition to the three core pillars of the initial Action Plan – waste, transport, and energy – the city has proposed a fourth pillar on tree planting in urban areas, aiming to improve carbon sequestration and rainfall capture, while reducing the urban heat island effect. Moving forward with these four pillars, combined with efforts already in place, Buenos Aires plans to reduce emissions by 10% by 2020 and by 30% by 2030.

By upgrading the methodology of the city’s emissions inventory, Buenos Aires identified a new focus area for its Climate Change Action Plan.

In 2011, Buenos Aires enacted the Climate Change Law in support of its Climate Change Action Plan, confirming its commitment to reducing emissions. The law enforces checks and updates of the plan every five years, the first of which occurred in 2015 and resulted in the conversion of the city’s initial emission inventories to a more accurate, robust version based on the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC).

The process of upgrading the inventories has helped the city define a new focus area of the Climate Change Action Plan for 2020. In addition to the three core pillars of the initial Action Plan – waste, transport, and energy – the city has proposed a fourth pillar on tree planting in urban areas, aiming to improve carbon sequestration and rainfall capture, while reducing the urban heat island effect. Moving forward with these four pillars, combined with efforts already in place, Buenos Aires plans to reduce emissions by 10% by 2020 and by 30% by 2030.

Inventory Upgrade Improves Climate Strategy

→ By upgrading the methodology of the city’s emissions inventory, Buenos Aires identified a new focus area for its Climate Change Action Plan.

In 2011, Buenos Aires enacted the Climate Change Law in support of its Climate Change Action Plan, confirming its commitment to reducing emissions. The law enforces checks and updates of the plan every five years, the first of which occurred in 2015 and resulted in the conversion of the city’s initial emission inventories to a more accurate, robust version based on the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC).

The process of upgrading the inventories has helped the city define a new focus area of the Climate Change Action Plan for 2020. In addition to the three core pillars of the initial Action Plan – waste, transport, and energy – the city has proposed a fourth pillar on tree planting in urban areas, aiming to improve carbon sequestration and rainfall capture, while reducing the urban heat island effect. Moving forward with these four pillars, combined with efforts already in place, Buenos Aires plans to reduce emissions by 10% by 2020 and by 30% by 2030.
Leading the way in Sub-Sahara Africa, the Kampala Climate Change Action Strategy addresses climate change mitigation and adaptation, starting with the city’s own operations. The foundation of the strategy is the city’s first energy and climate profile, developed in 2015. Under the strategy, the Kampala Capital City Authority (KCCA), the body that governs and oversees city operations, is incorporating energy and climate goals into its policies and services, with plans to build a denser city with improved transit options, cultivate more green space, increase renewable energy usage, improve waste and water management, and implement a green public procurement policy. The ultimate goal is to reduce CO₂ emissions by nearly a quarter over the next 15 years.

In order to achieve the most effective outcomes, KCCA has educated its employees on climate issues, holding more than 15 workshops to date. They are also urging the rest of the city to join their efforts by launching campaigns encouraging citizens to build away from wetlands and promoting urban agriculture, with more than 1,200 farmers having already received training and small grants.

Kampala’s new Climate Change Action Strategy is instituting energy efficiency and sustainability in the Ugandan capital’s operations, serving as an example for other African cities.
Guangzhou, a megacity with a population exceeding 13 million, is still in a stage of rapid economic development and urban construction. In 2012, Guangzhou launched the Pilot Low Carbon City Implementation Plan in an effort to reduce greenhouse emissions through systematic measures in the growing city. The plan includes the elimination of outdated industrial capacity and equipment and the promotion of energy-efficient technologies and green, low-carbon buildings. Transport infrastructure is also being targeted, with a new public transport system mainly based on rail transit.

Both market mechanisms, such as limiting entry permits for high-carbon projects to control greenhouse gas emissions, and institutional mechanisms, such as stricter emissions standards, have been used to promote low-carbon development under the plan. Green industries have developed quickly in the city, with an added value of $4.2 billion in 2014, a 11.1% increase compared to the previous year. As a commitment to the plan, Guangzhou announced in 2015 it will reach its carbon emissions peak by 2020.

Guangzhou is planning for an increasing population and rising demand for energy with the a multi-sector, low-carbon plan for green growth, targeting industry, infrastructure, and buildings.

CITY: GUANGZHOU

Low-Carbon Megacity Encourages Green Growth

→ Guangzhou is planning for an increasing population and rising demand for energy with the a multi-sector, low-carbon plan for green growth, targeting industry, infrastructure, and buildings.

THE CHALLENGE

With energy consumption already high and demand increasing in urban and industrial areas, Guangzhou aims to reduce its carbon emissions while maintaining growth by focusing on industrial planning, architecture, transportation, government agencies, and residential communities.

CO-BENEFITS

Environmental

The plan promotes environmental improvements by strengthening forest carbon sequestration with afforestation and the low-carbon disposal of biochemical waste.

Social

In constructing new rail transit, the plan reduces traffic on the roads, with residents spending less time commuting to and from work.

Economic

Guangzhou’s target is to reduce CO₂ emissions per $1,500 of GDP by 40% or more by 2020 compared to 2010.

Health

Due to the plan’s initiatives, Guangzhou’s air quality standard was met 85% of days in 2015, an increase of 8% compared to the year before.
The 2016 Oakland Greenhouse Gas Emissions Inventory is among the few in the world that have incorporated the consumption of the city’s goods and services, including upstream elements of resource extraction, processing, manufacturing, and transportation, as well as downstream impacts from waste management, in their carbon footprint. The city created greenhouse gas inventories for the 2005, 2010, and 2013 calendar years with the assistance of academic and NGO partners. By analyzing emissions back to the city’s baseline year of 2005, the inventory makes it easy to compare life-cycle impacts over time.

The baseline (2005) emissions associated with Oakland are 2.9 million metric tons under the traditional inventory methodology, but 8.9 million metric tons using this new consumption approach. Also telling, life-cycle emissions account for up to 65% of the total greenhouse gas emissions associated with transportation, buildings, and waste. While the inventory does not directly reduce emissions, it provides the analysis, quantification, and perspective for city leaders and the public to understand which efforts are the most effective in reducing emissions.

Oakland established a solid foundation for climate policy-making by determining where the majority of the city’s emissions come from via a consumption-based greenhouse gas emissions inventory.

The 2016 Oakland Greenhouse Gas Emissions Inventory is among the few in the world that have incorporated the consumption of the city’s goods and services, including upstream elements of resource extraction, processing, manufacturing, and transportation, as well as downstream impacts from waste management, in their carbon footprint. The city created greenhouse gas inventories for the 2005, 2010, and 2013 calendar years with the assistance of academic and NGO partners. By analyzing emissions back to the city’s baseline year of 2005, the inventory makes it easy to compare life-cycle impacts over time.

The baseline (2005) emissions associated with Oakland are 2.9 million metric tons under the traditional inventory methodology, but 8.9 million metric tons using this new consumption approach. Also telling, life-cycle emissions account for up to 65% of the total greenhouse gas emissions associated with transportation, buildings, and waste. While the inventory does not directly reduce emissions, it provides the analysis, quantification, and perspective for city leaders and the public to understand which efforts are the most effective in reducing emissions.

Oakland’s consumption-based emissions inventory aims to lay the foundation for the uptake in green technology industries, such as solar generation.
As one of the first cities in the global south to commit to long-term carbon neutrality as a municipal policy, Rio de Janeiro has launched its 50-year Neutral Carbon Rio Strategy to achieve carbon neutrality by 2065, putting the city on a low-carbon, resilient, and inclusive path to development. Rio has established a greenhouse gas inventory based on the Global Protocol for Community-Scale Greenhouse Gas Emission Inventories (GPC), acting as the foundation for establishing climate goals and actions, which will be regularly revisited and updated.

So far, the city plans to improve the public transport network, as well as water and energy efficiency, with a goal to reuse more than 80% of all water consumed, preserve floodplains within the city, and produce 30% of energy consumed in the city from renewable and decentralized sources. Overall, the project aims to reduce the city’s annual carbon emissions from a baseline of 11.6 million tons to 9.2 million tons by 2020, and further to 2.3 million tons by 2050, a full 80% reduction.

Rio de Janeiro’s Neutral Carbon Rio Strategy is improving the city’s outlook for its water and energy supply while leading the way in carbon-neutral planning in the global south.

CITY: RIO DE JANEIRO

Carbon-Neutral Commitment in Global South

→ Rio de Janeiro’s Neutral Carbon Rio Strategy is improving the city’s outlook for its water and energy supply while leading the way in carbon-neutral planning in the global south.

The Challenge

Rio faces climate change threats due to a change in rainfall patterns, impacting the availability of water and energy, with hydropower production accounting for more than 70% of current electricity usage. Rio is securing a sustainable future for its people by planning for water and energy efficiency measures with a commitment to carbon neutrality through the Neutral Carbon Rio Strategy.

Co-Benefits

- **Environmental**
 The strategy will see cleaner air through the use of clean fuels, improving the quality of local ecosystems.

- **Social**
 The strategy promotes a more inclusive city, due to a better and more efficient public transportation network, available to more people.

- **Economic**
 Through the implementation of the Neutral Carbon Rio Strategy, Rio de Janeiro will focus and develop its sustainable construction industry, making use of green technology and renewable energy.

- **Health**
 It is expected that there will be fewer occurrences of waterborne diseases due to better water management and measures to decrease urban flooding that are included in the strategy.

Rio’s new light-rail network is part of the city’s plan to improve public transport.
The Flagship Program of Low-Carbon Green City Development in Taoyuan was released in 2016 in an effort to reduce the city’s greenhouse gas emissions by 210,000 tons by 2020. The program’s 30 action plans are shaped by a number of themes, including fostering behavioral and consumption changes among the public and promoting industry growth in green technology fields. Specific actions to foster low-carbon lifestyles among residents include educational campaigns, incentives, and nudging programs related to food, clothing, housing, transportation, education, and recreation.

In terms of green industry growth, the city promotes the sale and lease of municipal buildings’ roofs for solar installations, encourages communities to set up solar power generation systems, and nurtures private sector development and consulting in the solar and wind industries. Taoyuan expects these efforts to boost the total capacity of solar energy to 20 MW by 2017. Annual performance indicators are tracked to ensure that the city reaches its CO2 reduction goal in the coming years.

The Taiwanese city of Taoyuan has launched a development plan targeting lifestyle changes and the creation of a renewable energy industry in an effort to shrink the city’s CO2 emissions.

The Flagship Program of Low-Carbon Green City Development in Taoyuan was released in 2016 in an effort to reduce the city’s greenhouse gas emissions by 210,000 tons by 2020. The program’s 30 action plans are shaped by a number of themes, including fostering behavioral and consumption changes among the public and promoting industry growth in green technology fields. Specific actions to foster low-carbon lifestyles among residents include educational campaigns, incentives, and nudging programs related to food, clothing, housing, transportation, education, and recreation.

In terms of green industry growth, the city promotes the sale and lease of municipal buildings’ roofs for solar installations, encourages communities to set up solar power generation systems, and nurtures private sector development and consulting in the solar and wind industries. Taoyuan expects these efforts to boost the total capacity of solar energy to 20 MW by 2017. Annual performance indicators are tracked to ensure that the city reaches its CO2 reduction goal in the coming years.
The Building Energy Efficiency sector focuses on solutions that mitigate the high environmental impact of the built environment. By refurbishing buildings with energy-efficient innovations, targeting residential buildings for upgrades, and encouraging greener building regulations, these solutions showcase how cities are taking action against the most energy-intensive sector of society.
Guangzhou has instituted a plan requiring large public institutions, such as government agencies, hospitals, schools, and cultural and sports venues, to complete comprehensive energy audits and undertake energy efficiency improvements by the end of 2017. In order to target the biggest energy consumers, the plan applies to 206 institutions with annual power consumption of at least 1,500 MWh or a gross floor area of 20,000 m², mandating a 20% reduction of energy demand per unit of floor area after improvements are completed.

The plan builds on impressive results from previous years, in which 31 energy efficiency improvement projects implemented at public institutions in Guangzhou cut annual power consumption by 21,000 MWh and reduced CO₂ emissions by 12,000 tons from 2012 to 2015. The intent of requiring energy audits and efficiency improvements for these key energy consumers is to provide examples of green public buildings and formulate the energy consumption standard for all public institutions in Guangzhou.
CITY: TORONTO

Apartment Retrofits Prioritize Resident Well-Being

→ Toronto is renovating its older building stock via a community-focused program that engages property owners, building managers, and residents in improvements.

With the Tower Renewal Program, Toronto is engaging residents in the renovation of its older apartment building stock through a suite of complementary initiatives that drive energy efficiency, social cohesion, and economic development. A key initiative under the program is Sustainable Towers, Engaging People (STEP), which supports property owners and building managers in benchmarking and incrementally improving the energy, water, waste, safety, operations, and community-building performance of their buildings. So far, the city has benchmarked 230 buildings and created customized action plans for 120, while STEP participants have realized energy savings of 5% to 20%.

To date, the Tower Renewal Program has reached a quarter of the 1,200 old buildings in its scope. Taking care to ensure that the program is well integrated with other city services, it is supported by Hi-RIS, Toronto’s innovative and low-cost financing tool for energy upgrades. The city expects significant results from the Tower Renewal Program as the pilot phase demonstrated that buildings’ greenhouse emissions could decrease by up to 74% after retrofits.

1.4M TONS OF POTENTIAL GREENHOUSE GAS EMISSIONS REDUCED YEARLY AFTER RETROFITS ARE COMPLETED AT THE 1,200 POTENTIAL BUILDINGS

THE CHALLENGE
Toronto’s residential building sector generates approximately 44% of its greenhouse gas emissions, with older buildings as key emissions contributors. Through its Tower Renewal Program, the city is able to encourage property owners and managers to improve the environmental performance of older buildings and accrue social and economic benefits for surrounding communities.

CO-BENEFITS

Environmental
Field tests and outreach at 10 Tower Renewal Program sites demonstrated ways to improve waste diversion, rates of which have already doubled since 2007 due in part to the program’s support.

Social
The STEP program guides owners to improve lighting and sightlines at the property, allowing residents to feel an increased sense of safety in and around their buildings and reclaim spaces formerly deemed unsafe.

Economic
As retrofits are completed on buildings each year, jobs will be created in planning, design, construction, and maintenance.

Health
The Tower Renewal Program has hosted more than 75 health and nutrition sessions with approximately 750 residents who have learned and shared healthy cooking and nutrition tips.

A new courtyard and mural are under construction at one of the Tower Renewal Program’s apartment sites.
To achieve the city’s goal of reducing greenhouse gas emissions by 80% by 2050, San Francisco, in 2011, adopted a holistic approach to energy efficiency in a range of buildings, with a focus on energy equity and market impact. The city has since facilitated energy efficiency upgrades in 3,000 commercial, 1,000 multi-family, and 500 single-family buildings via a suite of programs, many of which are specifically designed to target small businesses and low-income housing. One such program is an energy efficiency undertaking in the Chinatown Development Center’s affordable housing project, which reduced energy use by 49,235 kWh and saved 30% in annual average utility costs.

In addition to offering energy upgrades and incentives, San Francisco is working to transform the market for energy efficiency by, for instance, passing the Existing Commercial Building Benchmarking Ordinance (ECBO) which requires commercial property owners to report total energy use annually and obtain an energy audit or conduct retro-commissioning every five years. The audits found that in the first 800 buildings subject to the policy, an investment of $60.5 million would yield $25 million in annual energy savings.

Through a range of diverse and ambitious initiatives targeting everything from small homes to large commercial properties, San Francisco has accelerated the equitable uptake of energy efficiency retrofits.

To achieve the city’s goal of reducing greenhouse gas emissions by 80% by 2050, San Francisco, in 2011, adopted a holistic approach to energy efficiency in a range of buildings, with a focus on energy equity and market impact. The city has since facilitated energy efficiency upgrades in 3,000 commercial, 1,000 multi-family, and 500 single-family buildings via a suite of programs, many of which are specifically designed to target small businesses and low-income housing. One such program is an energy efficiency undertaking in the Chinatown Development Center’s affordable housing project, which reduced energy use by 49,235 kWh and saved 30% in annual average utility costs.

In addition to offering energy upgrades and incentives, San Francisco is working to transform the market for energy efficiency by, for instance, passing the Existing Commercial Building Benchmarking Ordinance (ECBO) which requires commercial property owners to report total energy use annually and obtain an energy audit or conduct retro-commissioning every five years. The audits found that in the first 800 buildings subject to the policy, an investment of $60.5 million would yield $25 million in annual energy savings.

Through a range of diverse and ambitious initiatives targeting everything from small homes to large commercial properties, San Francisco has accelerated the equitable uptake of energy efficiency retrofits.

To achieve the city’s goal of reducing greenhouse gas emissions by 80% by 2050, San Francisco, in 2011, adopted a holistic approach to energy efficiency in a range of buildings, with a focus on energy equity and market impact. The city has since facilitated energy efficiency upgrades in 3,000 commercial, 1,000 multi-family, and 500 single-family buildings via a suite of programs, many of which are specifically designed to target small businesses and low-income housing. One such program is an energy efficiency undertaking in the Chinatown Development Center’s affordable housing project, which reduced energy use by 49,235 kWh and saved 30% in annual average utility costs.

In addition to offering energy upgrades and incentives, San Francisco is working to transform the market for energy efficiency by, for instance, passing the Existing Commercial Building Benchmarking Ordinance (ECBO) which requires commercial property owners to report total energy use annually and obtain an energy audit or conduct retro-commissioning every five years. The audits found that in the first 800 buildings subject to the policy, an investment of $60.5 million would yield $25 million in annual energy savings.
Initiated by Sydney and Melbourne, the CitySwitch Green Office program provides training, network access, and tracking tools to businesses to help them reduce day-to-day energy use and improve their overall sustainability performance. Although Melbourne and Sydney have been collaborating for a decade, the program recently expanded to seven cities, and now partners with both states and the federal government. To date, CitySwitch supports 12% of Australia’s commercial office space. As demonstrated by its widespread adoption, the program has positively impacted businesses’ energy performances in participating jurisdictions. On energy and carbon, verified data shows that signatory businesses deliver 25% savings on average during their time in the program. In 2015 alone, the program’s 1,500 projects achieved almost 350,000 metric tons of CO₂ reductions.

In addition to a wide business network, the program also provides structured performance management tools that help measure and quantify outcomes and integrate other business priorities like costs, employee health, social sustainability, and technology. In 2015, nearly 30% of completed CitySwitch projects related to health, technology, or staff engagement, and the program’s members’ combined actions helped avoid $9.7 million in energy-related expenses.

City Alliance Yields Nationwide Energy Savings

Sydney and Melbourne expanded their successful CitySwitch Green Office program, which is now improving businesses’ energy performance in cities across Australia.
Owners and Renters Collaborate to Reduce Energy Use

By mandating that large residential buildings disclose their energy use, Tokyo is getting tenants and owners to collaborate on prioritizing energy efficiency upgrades.

Large residential buildings included in Tokyo’s Cap-and-Trade Program must report their energy use and efforts to reduce consumption, under the city’s mandatory Tenant Rating and Disclosure Program. As part of the program, each apartment unit receives an evaluation and a grade, which is disclosed on the city’s website. While Tokyo already works with owners to reduce energy use, tenant engagement is essential to accelerate the uptake of energy efficiency upgrades. The program not only increases awareness and transparency, but also incentivizes owners and tenants to collaborate by making tenants responsible parties. In addition, the city supports the disclosure program by providing important information on how to improve energy performance, as well as pilot projects for retrofits and environmental performance attached to leases.

The city also encourages the participation of medium and small tenant buildings with a Carbon Certification Program, which rewards well-performing buildings, and releases energy performance to tenants and potential tenants. Through the new initiatives, Tokyo aims to reduce building energy use in all tenant buildings by approximately one-sixth by 2020.

Environmental

The program also aims to increase tenants’ awareness of climate issues such as resource scarcity, water use, and waste management.

Social

Increasing tenant and owner collaboration has positive effects on their preparedness and resilience to crises such as extreme weather events.

Economic

When implemented, energy-saving measures will reduce the energy expenditure of each tenant building – benefitting both unit renters and building owners.
In 2011, Charlotte, North Carolina, launched Envision Charlotte, a program with a goal to reduce large buildings’ energy use by 20% by the end of 2016 through behavioral change and equipment improvements. The city engaged a number of local stakeholders in the effort, partnering with the local utility, Duke Energy, to encourage individuals in office buildings to adopt energy-saving practices, like turning off lights, with creative games, while working closely with property managers and engineers to optimize systems for energy efficiencies. The program also lent the services of university students and professors, inviting them to audit buildings to identify the best options for equipment upgrades.

From its launch, Envision Charlotte was able to secure pledges from 61 of the city’s 64 major commercial buildings, with participating properties committing to reduce energy consumption by 20% over the course of the project. As part of this commitment, building owners also installed meters to gather data and track improvements from implemented projects. The initiatives were largely successful, yielding a 17.2% annual reduction in energy use compared to the 2010 base year.

→ By focusing on both energy efficiency upgrades and changing individuals’ energy-savings habits, Charlotte was able to substantially reduce the energy used in the city’s largest commercial buildings.

CITY: CHARLOTTE

Behavioral Changes and Building Upgrades Yield Energy Savings

METRIC TONS OF CO₂ REDUCED IN 2015 COMPARED TO 2010 LEVELS BECAUSE OF ENVISION CHARLOTTE PROJECTS

THE CHALLENGE

To reduce energy use in the city’s commercial buildings sector, one of the most significant contributors to CO₂ emissions in the North Carolina capital, Charlotte collaborated closely with local universities and the private sector to implement a series of measures to encourage energy-saving habits among the employees in large buildings and boost the uptake of energy efficient equipment, which resulted in a significant decrease in energy use.

CO-BENEFITS

Environmental
The city and Duke Energy are rolling out a mobile application to complement energy-saving measures with further education on water efficiency, waste, and transportation.

Social
Active engagement was a key component of Envision Charlotte; behavioral change initiatives alone accounted for a 6.2% reduction in energy use.

Economic
Participating buildings lowered their utility bills due to the decrease in energy use.

In 2011, Charlotte, North Carolina, launched Envision Charlotte, a program with a goal to reduce large buildings’ energy use by 20% by the end of 2016 through behavioral change and equipment improvements. The city engaged a number of local stakeholders in the effort, partnering with the local utility, Duke Energy, to encourage individuals in office buildings to adopt energy-saving practices, like turning off lights, with creative games, while working closely with property managers and engineers to optimize systems for energy efficiencies. The program also lent the services of university students and professors, inviting them to audit buildings to identify the best options for equipment upgrades.

From its launch, Envision Charlotte was able to secure pledges from 61 of the city’s 64 major commercial buildings, with participating properties committing to reduce energy consumption by 20% over the course of the project. As part of this commitment, building owners also installed meters to gather data and track improvements from implemented projects. The initiatives were largely successful, yielding a 17.2% annual reduction in energy use compared to the 2010 base year.
In 2011, Wuhan initiated construction on one of the largest green buildings in China. Covering 68,480 m², the Wuhan New Energy Research Institute is a home to forward-thinking research focused on developing wind, solar, and clean energy knowledge and technologies. Aiming to be a landmark of science and technology, the building has been constructed according to BREEAM and “China Green 3-star” standards.

The innovative design of the building takes into account the power of nature, forming the shape of a lily, and using this shape to reduce energy use and optimize the use of natural resources. The roof of the main tower, which resembles the flower, is covered with solar panels. The tower, or “stem,” beneath the flower falls within its shadow, reducing the need for additional heating and cooling, while consuming no fossil fuels and emitting no CO₂. Furthermore, a wind turbine at the center of the structure produces 480,000 kWh of energy for the building. While this research institute, housed on 11 hectares of land, emitted only 2,863 tons of CO₂ in 2015, it aims to be emissions-free in the coming years.

Wuhan’s clean energy research center was built with a goal to emit zero carbon emissions, while the researchers inside focus on developing innovative wind and solar technologies.

In recent years, China’s building sector has been characterized by rapid new construction and demolition of older buildings. A key challenge is therefore to ensure that new buildings reduce energy use and optimize resources. The Wuhan New Energy Research Institute is a prime example of engineering and design excellence that can reduce CO₂ emissions and serve as a model to other new construction in Wuhan and cities throughout China.

CO-BENEFITS

Environmental
The research center’s innovative design features provide natural light and shading, which reduces the need for artificial lighting and air-conditioning.

Economic
The building will save 530,000 kWh of electricity and 4,800 tons of water annually, which will yield financial savings for the building owner.

Health
A natural ventilation system in the building controls the cleanliness and flow rate of air, improving comfort and indoor air quality.
New York City is facilitating energy efficiency retrofits in large buildings and those in low- and medium-income neighborhoods with a data-driven outreach strategy.

New York City’s retrofit programs utilize data-driven analysis and community outreach to pinpoint properties which present the greatest opportunities for energy savings and are at greatest risk of climate change impacts. Using a sophisticated strategy combining benchmarking, audits, and other data sources, the Retrofit Accelerator program is identifying and assisting owners of buildings larger than 4,600 m² with upgrades. Meanwhile, a complementary program, Community Retrofit, reaches out to owners of buildings in low- and moderate-income neighborhoods with the help of influential community organizations and local utilities, offering free technical advisory services for the implementation of energy and water efficiency projects.

Since its 2015 launch, Retrofit Accelerator has identified 1,000 projects for energy upgrades and over the next three years, the program will assist at least 1,500 buildings in implementing energy or water efficiency projects. At the same time, Community Retrofit anticipates greenhouse gas reductions of 9,000 metric tons of CO₂ over three years from at least 500 completed or initiated retrofits, resulting in $5 million in annual cost savings.

CITY: NEW YORK CITY

Data-Driven Outreach Leads to Building Retrofits

→ New York City is facilitating energy efficiency retrofits in large buildings and those in low- and medium-income neighborhoods with a data-driven outreach strategy.

New York City’s retrofit programs utilize data-driven analysis and community outreach to pinpoint properties which present the greatest opportunities for energy savings and are at greatest risk of climate change impacts. Using a sophisticated strategy combining benchmarking, audits, and other data sources, the Retrofit Accelerator program is identifying and assisting owners of buildings larger than 4,600 m² with upgrades. Meanwhile, a complementary program, Community Retrofit, reaches out to owners of buildings in low- and moderate-income neighborhoods with the help of influential community organizations and local utilities, offering free technical advisory services for the implementation of energy and water efficiency projects.

Since its 2015 launch, Retrofit Accelerator has identified 1,000 projects for energy upgrades and over the next three years, the program will assist at least 1,500 buildings in implementing energy or water efficiency projects. At the same time, Community Retrofit anticipates greenhouse gas reductions of 9,000 metric tons of CO₂ over three years from at least 500 completed or initiated retrofits, resulting in $5 million in annual cost savings.

CITY: NEW YORK CITY

Data-Driven Outreach Leads to Building Retrofits

→ New York City is facilitating energy efficiency retrofits in large buildings and those in low- and medium-income neighborhoods with a data-driven outreach strategy.
Bogotá is the first city in Colombia to implement the Green Hospital Program, which aims to improve the environmental performance of its public hospitals by adopting alternative sources of energy and environmentally responsible practices. In doing so, the city wants to reduce greenhouse gas emissions and improve the quality of life for patients and workers in the buildings. Bogotá is calculating the carbon footprint of its affiliated hospitals in order to establish a benchmark level for carbon reduction as well as mitigation strategies. Though the program is quite new, a number of pilot projects have already come online, such as a wind power installation at Santa Clara Hospital and solar water heater system at Suba Hospital. As a result of the new measures, there has been a 3.1% decrease in energy use in the pilot hospitals despite a 26.1% increase in services provided between 2012 and 2015.

Along with energy efficiency, the Green Hospital Program focuses on public hospitals’ management of waste and green areas, and works to add green walls and community gardens, which help stabilize temperatures and improve patients’ well-being.

Hospital Program Shrinks CO₂, Improves Patient Experience

→ Bogotá has pioneered a holistic approach integrating renewable energy and environmentally friendly practices in the public hospital network in order to reduce CO₂ emissions and improve patient experience.

Bogotá is the first city in Colombia to implement the Green Hospital Program, which aims to improve the environmental performance of its public hospitals by adopting alternative sources of energy and environmentally responsible practices. In doing so, the city wants to reduce greenhouse gas emissions and improve the quality of life for patients and workers in the buildings. Bogotá is calculating the carbon footprint of its affiliated hospitals in order to establish a benchmark level for carbon reduction as well as mitigation strategies. Though the program is quite new, a number of pilot projects have already come online, such as a wind power installation at Santa Clara Hospital and solar water heater system at Suba Hospital. As a result of the new measures, there has been a 3.1% decrease in energy use in the pilot hospitals despite a 26.1% increase in services provided between 2012 and 2015.

Along with energy efficiency, the Green Hospital Program focuses on public hospitals’ management of waste and green areas, and works to add green walls and community gardens, which help stabilize temperatures and improve patients’ well-being.

CO-BENEFITS

Environmental
The Green Hospital Program aims to better manage the hazardous waste generated by public hospitals and reduce the risk of contaminating nearby communities’ land and water.

Economic
The utilization of alternative sources of energy will reduce the hospitals’ utility bills.

Health
Installation of community gardens in hospitals helps improve patients’ psychological health.

The city has installed small-scale wind power turbines on the roof of Santa Clara Hospital to reduce the building’s greenhouse emissions.
In 2013, the Lithuanian capital, Vilnius, created an interactive online energy map allowing residents to access and compare energy performance data for 4,799 apartment blocks in the city. The city hopes the detailed and user-friendly information will spur homeowner associations to undertake energy efficiency upgrades that will help the city reduce its CO₂ emissions.

To make comparisons easier, buildings have been grouped into 15 classes based on energy efficiency and color coded for display on the map from green (very good) to purple (very poor). Users can select a particular building, and then view a pop-up window showing energy-related information, including the building's energy efficiency class for each winter for the three last seasons, building type and construction year, and monthly energy efficiency graphs to date. As a bonus feature, the online map enables users to see the financial and energy use benefits from energy-saving solutions, including roof insulation, window and door replacement, and heating and ventilation system modernization.

Vilnius is encouraging energy efficiency upgrades in its aging apartment buildings via an interactive, user-friendly online energy map enabling residents to see the benefits of undertaking renovations.

In 2013, the Lithuanian capital, Vilnius, created an interactive online energy map allowing residents to access and compare energy performance data for 4,799 apartment blocks in the city. The city hopes the detailed and user-friendly information will spur homeowner associations to undertake energy efficiency upgrades that will help the city reduce its CO₂ emissions.

To make comparisons easier, buildings have been grouped into 15 classes based on energy efficiency and color coded for display on the map from green (very good) to purple (very poor). Users can select a particular building, and then view a pop-up window showing energy-related information, including the building’s energy efficiency class for each winter for the three last seasons, building type and construction year, and monthly energy efficiency graphs to date. As a bonus feature, the online map enables users to see the financial and energy use benefits from energy-saving solutions, including roof insulation, window and door replacement, and heating and ventilation system modernization.

In 2013, the Lithuanian capital, Vilnius, created an interactive online energy map allowing residents to access and compare energy performance data for 4,799 apartment blocks in the city. The city hopes the detailed and user-friendly information will spur homeowner associations to undertake energy efficiency upgrades that will help the city reduce its CO₂ emissions.

To make comparisons easier, buildings have been grouped into 15 classes based on energy efficiency and color coded for display on the map from green (very good) to purple (very poor). Users can select a particular building, and then view a pop-up window showing energy-related information, including the building’s energy efficiency class for each winter for the three last seasons, building type and construction year, and monthly energy efficiency graphs to date. As a bonus feature, the online map enables users to see the financial and energy use benefits from energy-saving solutions, including roof insulation, window and door replacement, and heating and ventilation system modernization.

Vilnius is encouraging energy efficiency upgrades in its aging apartment buildings via an interactive, user-friendly online energy map enabling residents to see the benefits of undertaking renovations.

In 2013, the Lithuanian capital, Vilnius, created an interactive online energy map allowing residents to access and compare energy performance data for 4,799 apartment blocks in the city. The city hopes the detailed and user-friendly information will spur homeowner associations to undertake energy efficiency upgrades that will help the city reduce its CO₂ emissions.

To make comparisons easier, buildings have been grouped into 15 classes based on energy efficiency and color coded for display on the map from green (very good) to purple (very poor). Users can select a particular building, and then view a pop-up window showing energy-related information, including the building’s energy efficiency class for each winter for the three last seasons, building type and construction year, and monthly energy efficiency graphs to date. As a bonus feature, the online map enables users to see the financial and energy use benefits from energy-saving solutions, including roof insulation, window and door replacement, and heating and ventilation system modernization.

Vilnius is encouraging energy efficiency upgrades in its aging apartment buildings via an interactive, user-friendly online energy map enabling residents to see the benefits of undertaking renovations.

In 2013, the Lithuanian capital, Vilnius, created an interactive online energy map allowing residents to access and compare energy performance data for 4,799 apartment blocks in the city. The city hopes the detailed and user-friendly information will spur homeowner associations to undertake energy efficiency upgrades that will help the city reduce its CO₂ emissions.

To make comparisons easier, buildings have been grouped into 15 classes based on energy efficiency and color coded for display on the map from green (very good) to purple (very poor). Users can select a particular building, and then view a pop-up window showing energy-related information, including the building’s energy efficiency class for each winter for the three last seasons, building type and construction year, and monthly energy efficiency graphs to date. As a bonus feature, the online map enables users to see the financial and energy use benefits from energy-saving solutions, including roof insulation, window and door replacement, and heating and ventilation system modernization.

Vilnius is encouraging energy efficiency upgrades in its aging apartment buildings via an interactive, user-friendly online energy map enabling residents to see the benefits of undertaking renovations.

In 2013, the Lithuanian capital, Vilnius, created an interactive online energy map allowing residents to access and compare energy performance data for 4,799 apartment blocks in the city. The city hopes the detailed and user-friendly information will spur homeowner associations to undertake energy efficiency upgrades that will help the city reduce its CO₂ emissions.

To make comparisons easier, buildings have been grouped into 15 classes based on energy efficiency and color coded for display on the map from green (very good) to purple (very poor). Users can select a particular building, and then view a pop-up window showing energy-related information, including the building’s energy efficiency class for each winter for the three last seasons, building type and construction year, and monthly energy efficiency graphs to date. As a bonus feature, the online map enables users to see the financial and energy use benefits from energy-saving solutions, including roof insulation, window and door replacement, and heating and ventilation system modernization.

Vilnius is encouraging energy efficiency upgrades in its aging apartment buildings via an interactive, user-friendly online energy map enabling residents to see the benefits of undertaking renovations.

In 2013, the Lithuanian capital, Vilnius, created an interactive online energy map allowing residents to access and compare energy performance data for 4,799 apartment blocks in the city. The city hopes the detailed and user-friendly information will spur homeowner associations to undertake energy efficiency upgrades that will help the city reduce its CO₂ emissions.

To make comparisons easier, buildings have been grouped into 15 classes based on energy efficiency and color coded for display on the map from green (very good) to purple (very poor). Users can select a particular building, and then view a pop-up window showing energy-related information, including the building’s energy efficiency class for each winter for the three last seasons, building type and construction year, and monthly energy efficiency graphs to date. As a bonus feature, the online map enables users to see the financial and energy use benefits from energy-saving solutions, including roof insulation, window and door replacement, and heating and ventilation system modernization.

Vilnius is encouraging energy efficiency upgrades in its aging apartment buildings via an interactive, user-friendly online energy map enabling residents to see the benefits of undertaking renovations.

In 2013, the Lithuanian capital, Vilnius, created an interactive online energy map allowing residents to access and compare energy performance data for 4,799 apartment blocks in the city. The city hopes the detailed and user-friendly information will spur homeowner associations to undertake energy efficiency upgrades that will help the city reduce its CO₂ emissions.

To make comparisons easier, buildings have been grouped into 15 classes based on energy efficiency and color coded for display on the map from green (very good) to purple (very poor). Users can select a particular building, and then view a pop-up window showing energy-related information, including the building’s energy efficiency class for each winter for the three last seasons, building type and construction year, and monthly energy efficiency graphs to date. As a bonus feature, the online map enables users to see the financial and energy use benefits from energy-saving solutions, including roof insulation, window and door replacement, and heating and ventilation system modernization.

Vilnius is encouraging energy efficiency upgrades in its aging apartment buildings via an interactive, user-friendly online energy map enabling residents to see the benefits of undertaking renovations.

In 2013, the Lithuanian capital, Vilnius, created an interactive online energy map allowing residents to access and compare energy performance data for 4,799 apartment blocks in the city. The city hopes the detailed and user-friendly information will spur homeowner associations to undertake energy efficiency upgrades that will help the city reduce its CO₂ emissions.

To make comparisons easier, buildings have been grouped into 15 classes based on energy efficiency and color coded for display on the map from green (very good) to purple (very poor). Users can select a particular building, and then view a pop-up window showing energy-related information, including the building’s energy efficiency class for each winter for the three last seasons, building type and construction year, and monthly energy efficiency graphs to date. As a bonus feature, the online map enables users to see the financial and energy use benefits from energy-saving solutions, including roof insulation, window and door replacement, and heating and ventilation system modernization.
FINANCE & ECONOMIC DEVELOPMENT

OSLO
Green Procurement in the Construction Industry
P. 103

AUCKLAND
Revolving Fund Yields Large Municipal Savings
P. 105

CANBERRA
Reverse Auctions Secure Low-Cost Renewable Energy
P. 98

ADELAIDE
Financial Incentives Spur Green Home Improvements
P. 107
The Finance & Economic Development sector demonstrates how self-financing funding mechanisms and innovative public procurement are redefining the scope and scale of energy efficiency upgrades in cities and bolstering housing affordability. At the same time, these solutions demonstrate that environmental protection and climate change mitigation make good business sense for cities.
Thanks to its reverse auction process, Australia’s capital, Canberra, has secured 440MW of wind and solar capacity at the nation’s lowest known prices. As opposed to a regular auction, where bidders compete on the highest prices, in a reverse auction, suppliers compete to win government contracts by offering increasingly lower prices. This ensures emissions reductions from large-scale projects are as cost-efficient as possible. The process also includes an innovative feed-in tariff with a contract-for-difference model, which guarantees payment of the difference between the per/KWh price for electricity delivered in the original winning project bid and wholesale power prices. Through the reverse auction process, which ensures financial stability to project developers, Canberra plans to achieve 75% of its 100% renewable energy goal by 2020.

The cost of the power suppliers’ proposals are not the only criteria for a successful bid. In addition to project readiness and a financial guarantee, 20% of the evaluation score is based on local economic development benefits and another 20% on proven community engagement and approval of the project.

© Ben Wrigley & CCJ Architects
CITY: CHICAGO

Energy Savings Fund Efficiency Investments

 energía utilizada es el 71% de las emisiones de gases de efecto invernadero del municipio, y los residentes y negocios pasan más de $3 billones al año para operar edificios. Retrofit One es el primer de varios proyectos de CIT que permiten a Chicago actualizar su infraestructura antigua y realizar mejoras necesarias para el uso eficiente de la energía.

CO-BENEFITS

Environmental
Retrofit One redujo el uso anual de energía de los edificios municipales en 18% desde que comenzó el programa.

Social
Retrofits se llevaron a cabo en 35 de los 77 barrios de Chicago para asegurar que los beneficios del programa se compartieran ampliamente entre los distritos de negocios centrales y los barrios residenciales.

Economic
Retrofit One mejoró las edificaciones públicas en Chicago creando 144 nuevos empleos de construcción.

→ Retrofit One es un mecanismo financiero innovador que utiliza ahorros garantizados de energía y inversores privados para financiar mejoras de eficiencia energética a la infraestructura pública de Chicago.

In 2012, the Chicago Infrastructure Trust (CIT), a financing vehicle used to secure private capital for innovative public infrastructure, inaugurated its pilot project, Retrofit One. It raised $13.7 million for 114 energy efficiency projects, including advanced lighting management and building automation systems, in 60 public buildings in 2015. An Energy Savings Agreement serves as the core financing structure for the project, and municipal cost savings accruing from saved energy are shared with private investors according to specific terms. The agreement also includes a conditional payment structure requiring participating energy service companies to guarantee minimum project savings over 14 years. To date, the scheme has generated $1.4 million in annual cost savings and profit for investors. By involving third-party financing, the project will contribute to Chicago’s Climate Action Plan, which aims to reduce greenhouse gas emissions by 80% by 2050, while minimizing both energy project risk and the city’s financial responsibility.
Affordable Loans for Home Efficiency Upgrades

Two new loan programs in Toronto offer homeowners an affordable option to retrofit their property to improve energy efficiency and water conservation.

In 2014, Toronto launched two innovative loan programs: Home Energy Loan Program (HELP) and High-Rise Retrofit Improvement Support Program (Hi-RIS). Offered with no upfront costs and at a low interest rate, the loans target energy efficiency and water conservation upgrades in single-family houses and rental apartment buildings. Crucially, the cost of improvements is repaid over time via fixed installments linked to the property tax bill, meaning the loan is tied to the land not the owner, in case of sale. The program also has equity considerations, as owners’ eligibility is not dependent on traditional credit ratings but their rate of municipality repayment. So far, $5.4 million in low-interest loans have been committed to 111 energy projects.

The programs’ “one-window” service makes the process as easy and streamlined as possible for participants, allowing access to utility incentives, energy advisors, and customer support in addition to financing. Furthermore, HELP and Hi-RIS are self-sustaining financially and do not impact the city’s taxpayers, as about 60% of the operating budget has been raised from third-party sources and the remainder is recovered directly from program participants through an administrative fee.

Specifically designed for multi-residential buildings, Toronto’s Hi-RIS pilot program will target 1,000 homes and 10 apartment buildings.

Metric Tons of Greenhouse Gas Emissions Will Be Reduced Each Year After the Full Rollout of Hi-RIS

The residential building sector accounts for 44% of Toronto’s greenhouse gas emissions, and the city has more than 1 million housing units that were largely built before 1980, when no energy efficiency requirements were included in the building code. Through its low-cost loan initiative, the city enables homeowners to undertake more affordable and much-needed building retrofits.

CITY: TORONTO

Environmental

Results from the first year of the pilot indicate an estimated energy savings of 25% and 28% for HELP and Hi-RIS participants, respectively.

Social

With full rollout, Hi-RIS can improve the quality of housing for up to 549,000 residents, which represents 21% of Toronto’s population.

Economic

For the vast majority of completed HELP and Hi-RIS projects, the future energy cost savings are greater than the upfront capital borrowed and financing costs.
Washington, D.C. is using the Property Assessed Clean Energy (PACE) financing tool, along with public housing capital funds and private investment, to support the $16.8 million rehabilitation of the Phyllis Wheatley YWCA, which hosts 82 units of affordable housing for homeless women in transition in a rapidly gentrifying neighborhood. PACE provided 100% of the upfront capital for the project, which includes high-efficiency HVAC equipment and controls, lighting, domestic water heating, and plumbing systems, as well as a 32.7-kW solar PV system, which together will reduce energy consumption by 25%.

While PACE financing is available in most of the USA, this project marks the first time it has been approved for a Department of Housing and Urban Development-assisted mixed finance public housing property. By making it work in tandem with affordable housing subsidies, the novel mechanism enables rents to remain low enough so the property can remain as public affordable housing for at least 40 years, while at the same time it decreases its ecological footprint.

Washington, D.C.’s application of PACE financing to an affordable housing project is saving the property money as it promotes climate and energy equity.

THE CHALLENGE

Affordable housing properties and non-profits often have major deferred maintenance needs and struggle with the burden of high utility bills. Additionally, the upfront cost of efficiency improvements can put these technologies out of reach for many. By applying PACE financing to an affordable housing project, Washington, D.C. is bringing sustainability measures to an underserved market and proving that green retrofits and housing affordability can be mutually reinforcing.

CO-BENEFITS

Environmental

This project will reduce the property’s energy use by 24% and its water use by 47%.

Social

The project is designed to ensure that current residents of Phyllis Wheatley YWCA, a non-discriminatory residence for women in precarious situations, can remain in their homes and not be displaced.

Economic

The Wheatley YWCA owners are expected to save about $5,000 in utility and operations expenses each year, which reduces rents for women offered shelter in the facility.

Health

This project was supported by the Department of Behavioral Health, which provides ongoing supportive services, and mental health and substance abuse counseling to women in need.
Oslo is now harnessing its purchasing power to spur innovation in zero-emission construction vehicles and machinery. While public procurement is commonly used by governments to encourage market development in certain sectors, this industry had received little attention in the past. To remedy this the city is running four pilot projects, run concurrently by public and private actors, to test the following solutions: fossil fuel-free demolition sites, fossil fuel-free construction sites, onsite locally produced renewable energy, and prototype electrical vehicles. The city acts as the initiator of product development and ensures solutions are deployable in larger markets. The results of the pilot projects will serve as guidelines for the public procurement of the vehicles and machinery, which will be initiated in 2018.

Though this sector is quite specific and relatively small, this targeted procurement can have a major impact, and as such, the need for action in the area of construction vehicles and machinery to meet Oslo’s emissions reduction targets by 2020 is emphasized in the city’s Climate and Energy Strategy. Indeed, the full deployment of the project is estimated to account for 15% of the emissions reductions in the construction vehicles and machinery sub-sector.

CITY: OSLO

Green Procurement in the Construction Industry

→ Oslo is using public procurement to take the lead in the zero-emission construction vehicles and machinery market.

Oslo is now harnessing its purchasing power to spur innovation in zero-emission construction vehicles and machinery. While public procurement is commonly used by governments to encourage market development in certain sectors, this industry had received little attention in the past. To remedy this the city is running four pilot projects, run concurrently by public and private actors, to test the following solutions: fossil fuel-free demolition sites, fossil fuel-free construction sites, onsite locally produced renewable energy, and prototype electrical vehicles. The city acts as the initiator of product development and ensures solutions are deployable in larger markets. The results of the pilot projects will serve as guidelines for the public procurement of the vehicles and machinery, which will be initiated in 2018.

Though this sector is quite specific and relatively small, this targeted procurement can have a major impact, and as such, the need for action in the area of construction vehicles and machinery to meet Oslo’s emissions reduction targets by 2020 is emphasized in the city’s Climate and Energy Strategy. Indeed, the full deployment of the project is estimated to account for 15% of the emissions reductions in the construction vehicles and machinery sub-sector.
CITY: AUCKLAND

Revolving Fund Yields Large Municipal Savings

→ A revolving fund enables Auckland to invest money flowing from municipal energy-saving projects into additional energy efficiency improvements.

Auckland is using a revolving fund to finance energy efficiency upgrades in city-owned or managed buildings. The fund was first granted $700,000 in 2013 to invest in innovation and improvements of public-owned buildings; the savings achieved by the gains in efficiency have been reinvested in additional projects. To date, the retrofit of the Auckland Council Headquarters led to a 39% decrease in energy use and annual savings of $377,000. Additionally, the city’s outfitting of 40,000 streetlights with LEDs, and the addition of a tele-management system, will result in a total net savings of $30 million over 20 years.

As the Council has 1,816 buildings under its jurisdiction, Auckland has a wide scope to scale up improvements and achieve important savings via the revolving fund. In addition to addressing the climate-proofing needs of city-owned buildings, the project demonstrates the viability of energy efficiency investments and can act as a guide for building owners and the entire building industry across New Zealand.

THE CHALLENGE

Without intervention, Auckland’s greenhouse gas emissions could increase by 46% by 2025 and energy use by 65% by 2040. Moreover, the city spends nearly 5% of its gross regional product on energy. Through the revolving fund mechanism, Auckland is curbing its energy use and demonstrating that significant savings and efficiencies can be gained while minimizing costs for taxpayers.

CO-BENEFITS

Environmental

The headquarters of Auckland’s Council has achieved a 25% reduction in water use through installation of intelligent delivery systems included in its retrofit program.

Economic

A staff satisfaction survey in the retrofitted Council headquarters found that, within the first year of occupancy, personal productivity was up 8%.

Health

Thirty to 65% of night-time accidents can be attributed to the quality of white versus yellow light and their respective impacts on reaction time. The Council hopes to improve road safety with the adoption of LED streetlights, thanks to this fund.

15 GWh

DECREASE IN ENERGY USE BY MUNICIPAL BUILDINGS WILL BE FINANCED BY THE REVOLVING FUND OVER THREE YEARS

The solar PV installations on community buildings are increasing the resilience of Auckland’s municipal and community facilities.
Boston has launched the Renew Boston Trust (RBT) in an effort to improve energy efficiency and resilience upgrades in the city’s building stock by using a self-funded financing model. The system builds upon the idea of energy performance contracting, in which energy savings are used to finance investments. With RBT, operating savings from energy efficiency and renewable energy measures pay not only for those investments, but excess savings pay for resilience investments, which traditionally do not produce operating savings by themselves.

While the current program primarily targets municipal properties, RBT is working to apply innovative financing models to the institutional and non-profit sector as well, via a tax-exempt lease program that would aggregate small projects, allowing non-profits to reduce upfront costs and improve financing through economies of scale. When implemented, the expanded RBT is expected to achieve a 10-fold increase in funding for energy efficiency and resilience projects and accelerate achievement of the city’s Climate Action Plan emissions reduction goals.

Renew Boston Trust is using energy performance contracting to finance resilience measures with savings from energy efficiency upgrades in an effort to mitigate CO₂ emissions and boost adaptation capabilities.

CITY: BOSTON

THE CHALLENGE

Like many cities, for Boston, financing essential municipal infrastructure upgrades via taxes is increasingly difficult in the face of other pressing social needs. Yet, as a coastal city vulnerable to severe weather and sea level rise, Boston still requires significant investments in resilience and energy efficiency upgrades. The RBT helps solve this challenge by using a tried-and-true model to fund improvements to critical-but-underserved projects.

CO-BENEFITS

Environmental
The resilience upgrades funded by RBT can make properties and communities less vulnerable to rising sea levels and increased storm activity.

Social
Given the negative impact of high operating costs on housing, expanding self-funded investment in property upgrades, without burdening the operating budget, aims to make affordable housing more widely available.

Economic
The expansion of projects under RBT will expand the green-collar workforce needed to carry out resilience and energy efficiency improvements.

Health
The retrofit projects often result in improved indoor air quality that reduces respiratory health hazards.

The RBT is designed to scale up energy efficiency and resilience efforts across the city, in both public and private sectors.
Financial Incentives Spur Green Home Improvements

Adelaide is encouraging the installation of solar panels and other efficiency improvements with a scheme that reduces financial barriers for all property owners and residents.

Adelaide Sustainable City Incentives Scheme (SCIS) provides reimbursements to all property owners and tenants for the installation of an extensive range of green improvements, including solar photovoltaic systems, electric vehicle charging points, solar hot water systems, energy use monitoring devices, and rainwater tanks. Additionally, the SCIS also includes Australia’s first solar energy storage incentive, which covers 50% of the installed cost of a storage system, up to $3,750, in addition to $3,750 towards the installation of solar PV. In 2015, the scheme led to the installment and commitment of more than 1 MW of solar PV and 90 kWh capacity of energy storage.

To provide greater funding certainty for property owners and tenants, the SCIS also provides a Pre-installation Commitment, which reserves funding for a period of three months for projects that either require approval by a third party, offer community demonstration potential, engage multiple households, or involve the participation of state benefit recipients, including the elderly, students, or the unemployed.

CITY: ADELAIDE

Environmental
Based on solar conditions in Adelaide, it is estimated that solar PV installations will generate 1,460 MWh of zero-carbon electricity, and reduce carbon emissions by 978 tons per year.

Social
In addition to the pre-installation commitment, projects involving state benefit recipients are also eligible for higher SCIS rebates.

Economic
In its 2016-2017 Integrated Business Plan, Adelaide’s city council committed a further $112,000 to the scheme.

Solar panel installations are some of the most common home upgrades under the SCIS.
New York City’s Green Housing Preservation Program (GHPP) aims to reduce housing costs and greenhouse gas emissions in the city’s affordable housing sector by easing barriers to undertake energy efficiency and water conservation improvements. Under the program, property owners, who often perceive housing improvements as out of reach, gain access to energy audit information and low- or no-cost financing for key retrofit measures. With improvements such as the installation of efficiency controls, it is anticipated that owners may see more than a 10% annual reduction in utility costs, which account for roughly 25% of the average operating budget of a rent-stabilized building.

GHPP has the potential to impact a large number of owners and tenants in the city, as almost two-thirds of New York’s rental apartment buildings are eligible for the program. In addition to securing the climate resilience of owners and tenants in low- to moderate-income neighborhoods, the initiative is an important aspect of the city’s plan to reduce greenhouse gas emissions from buildings by 30% below 2005 levels by 2025.

New York City’s new program maintains housing affordability while mitigating greenhouse gas emissions by providing energy audits and low-cost financing to small property owners.

The Challenge
Thirty-five percent of New York’s emissions come from residential buildings; however, many small or medium property owners do not have the means to undertake retrofits as they also face mounting utility and operating costs. GHPP enables the city’s affordable housing sector to undertake upgrades and reduce greenhouse gas emissions while maintaining housing affordability.

Co-Benefits
- **Environmental**: GHPP decreases greenhouse gas emissions and increases the city’s resilience to extreme weather events.
- **Social**: Reductions in utility costs can help affordable buildings with restricted cash flow better prepare for financial and climate-related shocks and repair needs.
- **Economic**: Energy efficiency improvements could yield an average annual savings of approximately $1,500 per building for a 10-unit building and $3,000 for a 20-unit building.
- **Health**: Reducing greenhouse gas emissions reduces air pollutants, lowering risks for asthma, heart disease, and premature death.

Many of New York City’s buildings in low- to moderate-income neighborhoods date from the first half of the 20th century and are due for important retrofits.
SOCIAL EQUITY & CLIMATE CHANGE

ATHENS
Heatwave Action Plan Protects Vulnerable Residents
P. 123

SEOUL
Public-Private Partnership Prevents Energy Poverty
P. 115

TSHWANE
Small-Scale Farming Reaps Big Community Benefits
P. 113
The Social Equity & Climate Change sector showcases solutions that alleviate social injustices relating to climate change and its impacts, including expanding transport access for low-income city residents, adapting disadvantaged neighborhoods to the physical effects of climate change, and promoting food and energy security for marginalized communities.
In 2016, the NextGeneration NYCHA Sustainability Agenda was developed as a 10-year roadmap for healthy and comfortable homes able to withstand the impacts of climate change, in addition to supporting the city’s commitment to reduce its greenhouse gas emissions by 80% by 2050. The plan outlines 17 strategies to reduce NYCHA’s carbon footprint by 30% by 2025, foster resilience, and safeguard resident wellness, including improving heating and hot water efficiency, establishing standards for new buildings and improving existing buildings, adopting large-scale use of clean energy, and connecting residents to economic opportunity.

Flood risk and stormwater management are a priority of the agenda, with resilience plans in development for all housing vulnerable to coastal flooding, including risk assessments and retrofit guidelines based on lessons learned from Hurricane Sandy. Phase one of the stormwater infrastructure implementation projects has the potential to capture approximately 72 million liters per year. Additionally, NYCHA will provide back-up power for all Sandy-affected developments, develop microgrids at certain developments, and install 25 MW of solar power in an effort to protect public housing residents from the short- and long-term impacts of climate change.

The New York City Housing Authority (NYCHA) has devised a plan to reduce CO₂ emissions and ensure that affordable housing residents have resilient homes that can endure the effects of climate change.

In 2016, the NextGeneration NYCHA Sustainability Agenda was developed as a 10-year roadmap for healthy and comfortable homes able to withstand the impacts of climate change, in addition to supporting the city’s commitment to reduce its greenhouse gas emissions by 80% by 2050. The plan outlines 17 strategies to reduce NYCHA’s carbon footprint by 30% by 2025, foster resilience, and safeguard resident wellness, including improving heating and hot water efficiency, establishing standards for new buildings and improving existing buildings, adopting large-scale use of clean energy, and connecting residents to economic opportunity.

Flood risk and stormwater management are a priority of the agenda, with resilience plans in development for all housing vulnerable to coastal flooding, including risk assessments and retrofit guidelines based on lessons learned from Hurricane Sandy. Phase one of the stormwater infrastructure implementation projects has the potential to capture approximately 72 million liters per year. Additionally, NYCHA will provide back-up power for all Sandy-affected developments, develop microgrids at certain developments, and install 25 MW of solar power in an effort to protect public housing residents from the short- and long-term impacts of climate change.

The New York City Housing Authority (NYCHA) has devised a plan to reduce CO₂ emissions and ensure that affordable housing residents have resilient homes that can endure the effects of climate change.

In 2016, the NextGeneration NYCHA Sustainability Agenda was developed as a 10-year roadmap for healthy and comfortable homes able to withstand the impacts of climate change, in addition to supporting the city’s commitment to reduce its greenhouse gas emissions by 80% by 2050. The plan outlines 17 strategies to reduce NYCHA’s carbon footprint by 30% by 2025, foster resilience, and safeguard resident wellness, including improving heating and hot water efficiency, establishing standards for new buildings and improving existing buildings, adopting large-scale use of clean energy, and connecting residents to economic opportunity.

Flood risk and stormwater management are a priority of the agenda, with resilience plans in development for all housing vulnerable to coastal flooding, including risk assessments and retrofit guidelines based on lessons learned from Hurricane Sandy. Phase one of the stormwater infrastructure implementation projects has the potential to capture approximately 72 million liters per year. Additionally, NYCHA will provide back-up power for all Sandy-affected developments, develop microgrids at certain developments, and install 25 MW of solar power in an effort to protect public housing residents from the short- and long-term impacts of climate change.

The New York City Housing Authority (NYCHA) has devised a plan to reduce CO₂ emissions and ensure that affordable housing residents have resilient homes that can endure the effects of climate change.

In 2016, the NextGeneration NYCHA Sustainability Agenda was developed as a 10-year roadmap for healthy and comfortable homes able to withstand the impacts of climate change, in addition to supporting the city’s commitment to reduce its greenhouse gas emissions by 80% by 2050. The plan outlines 17 strategies to reduce NYCHA’s carbon footprint by 30% by 2025, foster resilience, and safeguard resident wellness, including improving heating and hot water efficiency, establishing standards for new buildings and improving existing buildings, adopting large-scale use of clean energy, and connecting residents to economic opportunity.

Flood risk and stormwater management are a priority of the agenda, with resilience plans in development for all housing vulnerable to coastal flooding, including risk assessments and retrofit guidelines based on lessons learned from Hurricane Sandy. Phase one of the stormwater infrastructure implementation projects has the potential to capture approximately 72 million liters per year. Additionally, NYCHA will provide back-up power for all Sandy-affected developments, develop microgrids at certain developments, and install 25 MW of solar power in an effort to protect public housing residents from the short- and long-term impacts of climate change.

The New York City Housing Authority (NYCHA) has devised a plan to reduce CO₂ emissions and ensure that affordable housing residents have resilient homes that can endure the effects of climate change.

In 2016, the NextGeneration NYCHA Sustainability Agenda was developed as a 10-year roadmap for healthy and comfortable homes able to withstand the impacts of climate change, in addition to supporting the city’s commitment to reduce its greenhouse gas emissions by 80% by 2050. The plan outlines 17 strategies to reduce NYCHA’s carbon footprint by 30% by 2025, foster resilience, and safeguard resident wellness, including improving heating and hot water efficiency, establishing standards for new buildings and improving existing buildings, adopting large-scale use of clean energy, and connecting residents to economic opportunity.

Flood risk and stormwater management are a priority of the agenda, with resilience plans in development for all housing vulnerable to coastal flooding, including risk assessments and retrofit guidelines based on lessons learned from Hurricane Sandy. Phase one of the stormwater infrastructure implementation projects has the potential to capture approximately 72 million liters per year. Additionally, NYCHA will provide back-up power for all Sandy-affected developments, develop microgrids at certain developments, and install 25 MW of solar power in an effort to protect public housing residents from the short- and long-term impacts of climate change.

The New York City Housing Authority (NYCHA) has devised a plan to reduce CO₂ emissions and ensure that affordable housing residents have resilient homes that can endure the effects of climate change.

In 2016, the NextGeneration NYCHA Sustainability Agenda was developed as a 10-year roadmap for healthy and comfortable homes able to withstand the impacts of climate change, in addition to supporting the city’s commitment to reduce its greenhouse gas emissions by 80% by 2050. The plan outlines 17 strategies to reduce NYCHA’s carbon footprint by 30% by 2025, foster resilience, and safeguard resident wellness, including improving heating and hot water efficiency, establishing standards for new buildings and improving existing buildings, adopting large-scale use of clean energy, and connecting residents to economic opportunity.

Flood risk and stormwater management are a priority of the agenda, with resilience plans in development for all housing vulnerable to coastal flooding, including risk assessments and retrofit guidelines based on lessons learned from Hurricane Sandy. Phase one of the stormwater infrastructure implementation projects has the potential to capture approximately 72 million liters per year. Additionally, NYCHA will provide back-up power for all Sandy-affected developments, develop microgrids at certain developments, and install 25 MW of solar power in an effort to protect public housing residents from the short- and long-term impacts of climate change.
The Tshwane Food and Energy Centre was established in 2015, providing small-scale farming opportunities to underprivileged residents under a cooperative model, incorporating synchronized production and centralized transactions. The Centre comprises 25 individual plots, where farmers tend to 60,000 chickens and manage 72,000 m² of vegetable plots. By vertically integrating assets, the Centre is able to finance a hatchery and slaughterhouse, as well as vegetable processing, seedling production, crop farming, and feed mill facilities. By creating a supply of nourishing produce that is locally, organically, and sustainably produced, the Centre ensures food sovereignty and security for the local community and the region at large.

In addition to food production, the Tshwane Food and Energy Centre produces self-sustaining energy via a photovoltaic solar power plant and by reusing livestock organic waste as feedstock for the production of biogas. This both reduces energy costs and serves as another source of income, while ensuring energy security for current and future entrepreneurial farmers.

The Tshwane Food and Energy Centre demonstrates the importance of collaborative farming to ensure food and energy security.

CITY: TSHWANE

Small-Scale Farming Reaps Big Community Benefits

→ By creating a cooperative of 25 small farms, Tshwane’s Food and Energy Centre is securing its food and energy supply for generations to come.

NEW JOBS CREATED BY THE TSHWANE FOOD AND ENERGY CENTRE

THE CHALLENGE

Economic and energy poverty and food insecurity are already national crises in rural South Africa, without taking into account extreme weather events, such as droughts and floods caused by climate change. As a flagship project, the Tshwane Food and Energy Centre is creating new opportunities for people from vulnerable communities to become small-scale entrepreneurial farmers, contributing to the food security of the region and establishing new sources of energy.

CO-BENEFITS

Environmental
The organic agriculture techniques implemented at the Food and Energy Centre enhance soil fertility, making it less susceptible to erosion.

Social
The project will improve capacity building of entrepreneurs in new ways of farming and business management.

Economic
The Centre is structured so that participating entrepreneurial farmers become independent and self-sustaining, enabling the potential expansion of the model.

Health
The Food and Energy Centre secures access to food, ensuring the community is getting the nourishment it needs.

Tshwane’s Food and Energy Centre demonstrates the importance of collaborative farming to ensure food and energy security.
Launched in 2015, Seoul’s Energy Welfare Public-Private Partnership Program is helping to alleviate energy poverty among the city’s disadvantaged communities via a range of direct and indirect support. Direct support includes financing for low-income households to have their homes retrofitted for greater energy efficiency, and training and employing disadvantaged job seekers as energy consultants to assess energy performance of low-income households. Since 2015, the program has employed 180 of these consultants who offer energy-saving advice and tips, and carry out home energy retrofits. Many consultants build on this experience and continue their career in energy-welfare related fields.

Indirect support from the program includes the creation of an innovative virtual power plant through which 17 municipal buildings and 16 universities save electricity consumption during peak hours and donate profits from saved power back to the program to finance energy welfare programs. Registered to sell 5 MW of electricity, this plant is the first of its kind in South Korea, and aims to create a sustainably financed method for alleviating energy poverty throughout the city.

Seoul’s partnership program enables low-income households to undergo energy efficiency upgrades and installations.
Buenos Aires’ Green Schools Program seeks to provide the city’s youth, particularly in low-income neighborhoods, with education about four key sustainability themes: integrated waste management, environmental health, energy efficiency and renewable energy, and climate change. The program offers both direct learning opportunities for students, as well as strategies to improve the teaching methods around these themes. The program is already achieving impressive results. In 2016, more than 2,500 schools and 588,000 students had already participated in the Green Schools Program’s integrated waste management initiative, and more than 16,000 supervisors, managers, teachers, and assistants were trained under Green Schools Program principles.

One-fourth of the program’s resources are dedicated specifically to Buenos Aires’ poorer southern neighborhoods, ensuring that socioeconomic disparities do not impact environmental education. These targeted programs include the creation of hydroponics gardens at schools near the polluted Mantanza River, in order to avoid the area’s heavily contaminated soil, and ensuring students not only have access to healthy, fresh, and safe food, but also learn about the importance of safe waste disposal and gardening practices.

Buenos Aires is bringing environmental education and local food production skills to its underserved neighborhoods, promoting access to healthy eating and sustainability knowledge for all youth.
In 2016, Los Angeles launched its plan to introduce electric car-sharing fleets into disadvantaged communities, benefiting those most impacted by air pollution and most in need of improved mobility options, in addition to reducing greenhouse gas emissions. As the first project of its kind in the world, the pilot will double car-sharing in the city, initially placing 100 shared-use EVs and 200 charging stations in disadvantaged communities in and around Central Los Angeles. Within three years, the project aims to recruit 7,000 new users, who are expected to sell or avoid purchasing 1,000 private vehicles. By putting EVs and infrastructure in low-income neighborhoods and providing a subsidy to encourage their use, the city is helping increase access to economic opportunities while also promoting behavior change, eco-friendly mobility options, and improved air quality.

The project is part of Los Angeles’ Sustainable City plan, which includes a goal of installing 1,000 public EV charging stations by 2017. Having already surpassed that goal, this program will help the city achieve its aims of having 25% of all vehicles on the road be emissions free by 2035 and reducing greenhouse gas emissions by 45% below 1990 baseline levels by 2025.

Los Angeles is introducing an electric car-sharing fleet in disadvantaged communities lacking transport options, in a coordinated effort to improve environmental conditions and economic prospects in these districts.

In 2016, Los Angeles launched its plan to introduce electric car-sharing fleets into disadvantaged communities, benefiting those most impacted by air pollution and most in need of improved mobility options, in addition to reducing greenhouse gas emissions. As the first project of its kind in the world, the pilot will double car-sharing in the city, initially placing 100 shared-use EVs and 200 charging stations in disadvantaged communities in and around Central Los Angeles. Within three years, the project aims to recruit 7,000 new users, who are expected to sell or avoid purchasing 1,000 private vehicles. By putting EVs and infrastructure in low-income neighborhoods and providing a subsidy to encourage their use, the city is helping increase access to economic opportunities while also promoting behavior change, eco-friendly mobility options, and improved air quality.

The project is part of Los Angeles’ Sustainable City plan, which includes a goal of installing 1,000 public EV charging stations by 2017. Having already surpassed that goal, this program will help the city achieve its aims of having 25% of all vehicles on the road be emissions free by 2035 and reducing greenhouse gas emissions by 45% below 1990 baseline levels by 2025.
Spreading across almost 16,500 m², Parque Lineal La Viga was constructed in the eastern part of Mexico City in 2015, mitigating urban climate vulnerabilities such as floods, water shortages, and heatwaves, in addition to preventing unequal urban development in an underprivileged part of the city. Up to 60% of the park’s area serves as a rain water catchment surface, mitigating floods by relieving pressure from the drainage and sewage systems. The collected stormwater is then treated and can be used as potable water, diversifying the city’s water sources.

Nearly 500 neighbors participated in the design of the park, aiming to create a major attraction to encourage social cohesion and economic development. Reachable by up to 4.6 million people within 30 minutes on public transport, the city anticipates that the presence of the park will result in increased revenues by local businesses, improve the livelihoods of nearby residents, and demonstrate the critical role of accessible public spaces in cities.

With the construction of Parque Lineal La Viga, Mexico City is preventing floods, reducing heatwaves, and increasing potable water, as well as providing new business opportunities for locals.

Spreading across almost 16,500 m², Parque Lineal La Viga was constructed in the eastern part of Mexico City in 2015, mitigating urban climate vulnerabilities such as floods, water shortages, and heatwaves, in addition to preventing unequal urban development in an underprivileged part of the city. Up to 60% of the park’s area serves as a rain water catchment surface, mitigating floods by relieving pressure from the drainage and sewage systems. The collected stormwater is then treated and can be used as potable water, diversifying the city’s water sources.

Nearly 500 neighbors participated in the design of the park, aiming to create a major attraction to encourage social cohesion and economic development. Reachable by up to 4.6 million people within 30 minutes on public transport, the city anticipates that the presence of the park will result in increased revenues by local businesses, improve the livelihoods of nearby residents, and demonstrate the critical role of accessible public spaces in cities.
In 2016, the Washington, D.C., public bike-sharing program, Capital Bikeshare, launched its Community Partners Program, designed to put low-cost bike-share memberships into the hands of those most in need of affordable transportation options. The Community Partners Program membership is available to local non-profits, government agencies, and social services organizations, enabling them to offer a steeply discounted annual membership to clients receiving social benefits, allowing equal access to safe, healthy, and sustainable transport. While the Capital Bikeshare system already boasts 35,000 members and averages 250,000 trips per month, the city hopes this new program will further increase the use of bicycles in the city.

In addition to reducing membership costs, the program equips individuals in traditionally underserved communities with resources, including workshops to learn how to bike. As of June 2016, five large social services organizations had signed on as partners and are enrolling their clients to become Capital Bikeshare members, showcasing how a city’s transportation department and social services can work together to address social needs and achieve positive environmental results.

→ Washington, D.C., has introduced low-cost memberships as part of the city’s bike-share program, helping ensure that healthy, green transport is available to everyone.

In 2016, the Washington, D.C., public bike-sharing program, Capital Bikeshare, launched its Community Partners Program, designed to put low-cost bike-share memberships into the hands of those most in need of affordable transportation options. The Community Partners Program membership is available to local non-profits, government agencies, and social services organizations, enabling them to offer a steeply discounted annual membership to clients receiving social benefits, allowing equal access to safe, healthy, and sustainable transport. While the Capital Bikeshare system already boasts 35,000 members and averages 250,000 trips per month, the city hopes this new program will further increase the use of bicycles in the city.

In addition to reducing membership costs, the program equips individuals in traditionally underserved communities with resources, including workshops to learn how to bike. As of June 2016, five large social services organizations had signed on as partners and are enrolling their clients to become Capital Bikeshare members, showcasing how a city’s transportation department and social services can work together to address social needs and achieve positive environmental results.
Athens’ Heatwave Action Plan was launched in 2016, aiming to protect the city’s most at-risk residents, including the elderly, those with cardiovascular or respiratory conditions, infants, people with obesity problems, and energy poverty stricken households from the adverse health threats of heatwaves. Through the coordination of municipal social services, the city is instituting projects such as increasing green areas, expanding the use of cool materials, increasing shade options, and promoting “cooling routes” in parts of the city where the urban heat island effect is more intense, ensuring that vulnerable residents are protected.

Under a strategic partnership between the city and the National Observatory of Athens, a digital heatwave warning mechanism is now available to residents via either personal computers or smartphones. The mechanism provides valuable information such as the current temperature in the user’s location, whether or not they are at risk depending on their age and medical condition, as well as how to reach a cooling spot in case they are indeed at risk.

Awareness campaigns like this one, advising residents to drink water, wear sunscreen, and not to leave pets or people in cars, are an important part of Athens’ Heatwave Action Plan.
In 2014, New Haven, Connecticut, launched an initiative to promote the use of public transit and active mobility in an effort to make alternative modes of transport available, accessible, and attractive for all residents and contribute to the city’s goal of reducing greenhouse gas emissions. Projects under the GoNewHavengo initiative include pedestrian wayfinding, pop-up bicycle infrastructure, and tabling at open streets and community events, reaching hundreds of New Haven residents each year. Furthermore, the campaign encourages businesses and their employees to use alternative transportation by running car-free commuting challenges and providing information on transit pre-tax benefits, custom trip planning, ride-sharing platforms, and free bike rack installation.

The campaign has an added focus of taking on the negative social stigma associated with public transport and creating a culture of widespread transit use among all city residents. In creating this culture, the campaign is improving air quality and reducing transit-related emissions, high rates of asthma, and transportation inequity. In just one year, 73,604 single-occupancy vehicle trips were avoided due to the initiative’s efforts.

New Haven’s campaign to promote alternative transportation as an easy choice for all residents is reducing CO₂ emissions by removing the stigma associated with public transportation.

In 2014, New Haven, Connecticut, launched an initiative to promote the use of public transit and active mobility in an effort to make alternative modes of transport available, accessible, and attractive for all residents and contribute to the city’s goal of reducing greenhouse gas emissions. Projects under the GoNewHavengo initiative include pedestrian wayfinding, pop-up bicycle infrastructure, and tabling at open streets and community events, reaching hundreds of New Haven residents each year. Furthermore, the campaign encourages businesses and their employees to use alternative transportation by running car-free commuting challenges and providing information on transit pre-tax benefits, custom trip planning, ride-sharing platforms, and free bike rack installation.

The campaign has an added focus of taking on the negative social stigma associated with public transport and creating a culture of widespread transit use among all city residents. In creating this culture, the campaign is improving air quality and reducing transit-related emissions, high rates of asthma, and transportation inequity. In just one year, 73,604 single-occupancy vehicle trips were avoided due to the initiative’s efforts.

New Haven’s campaign to promote alternative transportation as an easy choice for all residents is reducing CO₂ emissions by removing the stigma associated with public transportation.

In 2014, New Haven, Connecticut, launched an initiative to promote the use of public transit and active mobility in an effort to make alternative modes of transport available, accessible, and attractive for all residents and contribute to the city’s goal of reducing greenhouse gas emissions. Projects under the GoNewHavengo initiative include pedestrian wayfinding, pop-up bicycle infrastructure, and tabling at open streets and community events, reaching hundreds of New Haven residents each year. Furthermore, the campaign encourages businesses and their employees to use alternative transportation by running car-free commuting challenges and providing information on transit pre-tax benefits, custom trip planning, ride-sharing platforms, and free bike rack installation.

The campaign has an added focus of taking on the negative social stigma associated with public transport and creating a culture of widespread transit use among all city residents. In creating this culture, the campaign is improving air quality and reducing transit-related emissions, high rates of asthma, and transportation inequity. In just one year, 73,604 single-occupancy vehicle trips were avoided due to the initiative’s efforts.

New Haven’s campaign to promote alternative transportation as an easy choice for all residents is reducing CO₂ emissions by removing the stigma associated with public transportation.

In 2014, New Haven, Connecticut, launched an initiative to promote the use of public transit and active mobility in an effort to make alternative modes of transport available, accessible, and attractive for all residents and contribute to the city’s goal of reducing greenhouse gas emissions. Projects under the GoNewHavengo initiative include pedestrian wayfinding, pop-up bicycle infrastructure, and tabling at open streets and community events, reaching hundreds of New Haven residents each year. Furthermore, the campaign encourages businesses and their employees to use alternative transportation by running car-free commuting challenges and providing information on transit pre-tax benefits, custom trip planning, ride-sharing platforms, and free bike rack installation.

The campaign has an added focus of taking on the negative social stigma associated with public transport and creating a culture of widespread transit use among all city residents. In creating this culture, the campaign is improving air quality and reducing transit-related emissions, high rates of asthma, and transportation inequity. In just one year, 73,604 single-occupancy vehicle trips were avoided due to the initiative’s efforts.

New Haven’s campaign to promote alternative transportation as an easy choice for all residents is reducing CO₂ emissions by removing the stigma associated with public transportation.

In 2014, New Haven, Connecticut, launched an initiative to promote the use of public transit and active mobility in an effort to make alternative modes of transport available, accessible, and attractive for all residents and contribute to the city’s goal of reducing greenhouse gas emissions. Projects under the GoNewHavengo initiative include pedestrian wayfinding, pop-up bicycle infrastructure, and tabling at open streets and community events, reaching hundreds of New Haven residents each year. Furthermore, the campaign encourages businesses and their employees to use alternative transportation by running car-free commuting challenges and providing information on transit pre-tax benefits, custom trip planning, ride-sharing platforms, and free bike rack installation.

The campaign has an added focus of taking on the negative social stigma associated with public transport and creating a culture of widespread transit use among all city residents. In creating this culture, the campaign is improving air quality and reducing transit-related emissions, high rates of asthma, and transportation inequity. In just one year, 73,604 single-occupancy vehicle trips were avoided due to the initiative’s efforts.

New Haven’s campaign to promote alternative transportation as an easy choice for all residents is reducing CO₂ emissions by removing the stigma associated with public transportation.

In 2014, New Haven, Connecticut, launched an initiative to promote the use of public transit and active mobility in an effort to make alternative modes of transport available, accessible, and attractive for all residents and contribute to the city’s goal of reducing greenhouse gas emissions. Projects under the GoNewHavengo initiative include pedestrian wayfinding, pop-up bicycle infrastructure, and tabling at open streets and community events, reaching hundreds of New Haven residents each year. Furthermore, the campaign encourages businesses and their employees to use alternative transportation by running car-free commuting challenges and providing information on transit pre-tax benefits, custom trip planning, ride-sharing platforms, and free bike rack installation.

The campaign has an added focus of taking on the negative social stigma associated with public transport and creating a culture of widespread transit use among all city residents. In creating this culture, the campaign is improving air quality and reducing transit-related emissions, high rates of asthma, and transportation inequity. In just one year, 73,604 single-occupancy vehicle trips were avoided due to the initiative’s efforts.
The solutions in the Transportation sector showcase the importance of improving public transport systems to reach last-mile connectivity, promoting the use of clean fuelled-vehicles, and fully integrating mobility into urban planning and development in order to reduce CO$_2$ emissions and create more livable cities.
Wuhan has unveiled one of the world’s largest bike-sharing programs in an effort to solve last-mile transportation while engaging citizens through a fun and interactive carbon credit system.

Wuhan has rolled out one of the world’s largest bike-sharing projects, installing 20,000 bikes at 856 stations since 2015. Plans call for 80,000 bicycles and 3,160 stations to be installed city-wide by 2018. The new system is integrated with other modes of public transport in the city to increase connectivity. As a bonus feature, the stations offer charging facilities for electric vehicles, to further promote green transportation. Daily rides have risen from more than 1,000 during the trial period to about 80,000 in May 2016, amounting to 15 million total rides since launching.

A unique component of the system is the integration of a carbon credit scheme, through which bike-sharing users’ individual CO₂ reduction is calculated based on average riding speed and other factors, and converted into a carbon credit, registered to individual users. The credit can be used to purchase small personal commodities and services, such as movie tickets, or used to offset other carbon emissions.

The carbon credit concept enables citizens to understand their individual contribution to carbon emission reduction with every ride.
In September 2015, Addis Ababa inaugurated Sub-Saharan Africa’s first light-rail train (LRT). The LRT, an inner-city tram, can carry up to 60,000 people per hour, and after 10 months of operation, ridership has reached 15,000 passengers per hour in each direction. The train is powered by Ethiopia’s power grid, which is fueled almost exclusively by hydropower, geothermal, and wind power. Emissions reductions from the project are estimated to grow from 55,000 tons of CO₂ per year in 2015 to 170,000 tons CO₂ per year by 2030. The more efficient mode of transportation is expected to stimulate the local economy and attract new investments and will become a blueprint for local expansion and regional replication.

The project is the fruit of an international multi-stakeholder collaboration that involved different levels of the Ethiopian government, foreign banks, and the Chinese government. It is also an important tenet of the Addis Ababa Climate Resilient Growth Economy plan to drive the transition to a green economy.

In September 2015, Addis Ababa inaugurated Sub-Saharan Africa’s first light-rail train (LRT). The LRT, an inner-city tram, can carry up to 60,000 people per hour, and after 10 months of operation, ridership has reached 15,000 passengers per hour in each direction. The train is powered by Ethiopia’s power grid, which is fueled almost exclusively by hydropower, geothermal, and wind power. Emissions reductions from the project are estimated to grow from 55,000 tons of CO₂ per year in 2015 to 170,000 tons CO₂ per year by 2030. The more efficient mode of transportation is expected to stimulate the local economy and attract new investments and will become a blueprint for local expansion and regional replication.

The project is the fruit of an international multi-stakeholder collaboration that involved different levels of the Ethiopian government, foreign banks, and the Chinese government. It is also an important tenet of the Addis Ababa Climate Resilient Growth Economy plan to drive the transition to a green economy.

→ With Sub-Saharan Africa’s first renewable energy-powered light-rail train network, Addis Ababa is leading a modal shift for urban public transport on the continent.
CITY: BARCELONA

Redefining City Blocks to Tackle Traffic-Related Emissions

Barcelona is redefining the city’s streets to promote green spaces for citizens and reduce traffic-related emissions.

Through the Superblocks program, Barcelona is redesigning the city’s streets to limit traffic and increase the amount of green and recreational spaces available to citizens. The new program changes traditional city blocks into clusters of “superblocks,” where perimeter streets allow through traffic, but inner streets are reserved for pedestrians and cyclists. So far, the city has created Superblocks in four pilot neighborhoods, and by 2019, it expects the program will achieve CO₂ emissions reductions of between 20% and 75%.

The Superblocks program does not involve major physical changes, which allows for experimentation and reversibility. The project is part of a larger Urban Mobility Plan, a strategic measure of Barcelona’s Climate Commitment, expected to decrease traffic by 21% while extending car-free spaces by more than 23 hectares and adding 300 km of bike lanes. This measure will reduce CO₂ emissions by 159,100 metric tons per year.

→ Barcelona is redefining the city’s streets to promote green spaces for citizens and reduce traffic-related emissions.

THE CHALLENGE

Barcelona is a densely built city dealing with a lack of urban green space and chronic air and noise pollution problems. The Superblocks approach to spatial organization will increase green spaces and decrease emissions in a city where transportation accounts for 27.6% of CO₂ emissions.

CO-BENEFITS

- **Environmental**
 The project increases the amount of green spaces, reduces the heat island effect, and improves air quality.

- **Social**
 The new car-free public spaces encourage use by children and the elderly, and create opportunities for social interaction, sports, and cultural activities.

- **Economic**
 The Superblocks program improves the quality of life in the city which makes Barcelona a more attractive destination for businesses and their employees.

- **Health**
 The project simultaneously reduces the city’s noise pollution levels while increasing the amount of green space by 1 m² per capita.
Since January 2016, Taiyuan has undertaken one of the world’s most extensive electric vehicle overhaul projects. In just eight months, the city replaced all of its 8,292 taxis with electric vehicles, making it the fastest city to have replaced its entire taxi fleet with electric vehicles. The taxis currently rely on more than 2,000 units of 40-kW high-power charging outlets, and the city will also install 18 towers capable of providing power to 7,200 taxis simultaneously. By June 2016, 8,000 tons of CO₂ emissions were saved thanks to the fleet.

According to national regulations, the city’s conventional taxis have to be replaced with new vehicles in the years 2015 and 2016. Taiyuan took advantage of the deadline to usher in the new electric vehicle fleet. By replacing the internal combustion taxis for their electric counterparts, the city will significantly improve air quality; the municipality estimates reductions of 21,176 tons of CO, 2,451 tons of HC, and 3,478 tons of NOx per year.

Taiyuan, the largest city in Northern China’s Shanxi province, is one of the first cities in the world to replace its entire taxi fleet with electric vehicles.

Since January 2016, Taiyuan has undertaken one of the world’s most extensive electric vehicle overhaul projects. In just eight months, the city replaced all of its 8,292 taxis with electric vehicles, making it the fastest city to have replaced its entire taxi fleet with electric vehicles. The taxis currently rely on more than 2,000 units of 40-kW high-power charging outlets, and the city will also install 18 towers capable of providing power to 7,200 taxis simultaneously. By June 2016, 8,000 tons of CO₂ emissions were saved thanks to the fleet.

According to national regulations, the city’s conventional taxis have to be replaced with new vehicles in the years 2015 and 2016. Taiyuan took advantage of the deadline to usher in the new electric vehicle fleet. By replacing the internal combustion taxis for their electric counterparts, the city will significantly improve air quality; the municipality estimates reductions of 21,176 tons of CO, 2,451 tons of HC, and 3,478 tons of NOx per year.
ElectriCity is a cooperative venture in Gothenburg, bringing together 14 partners — including the city, vehicle manufacturers, transit operators, business authorities, and universities — in the development and testing of new solutions for next-generation sustainable public transport. In 2015, it launched a pilot public transport project in which 10 electric buses were unveiled along the 8 km route 55. The buses are quiet, exhaust-free, energy efficient, and 100% powered by renewable energy. Currently, 100,000 passengers per month take the new route and test the new products and services, including Wi-Fi, touch-screens, and a unique indoor bus stop system that increases accessibility to transport as stations can be placed inside hospitals or supermarkets.

By operating the ElectriCity project, the City of Gothenburg will learn how to use and deploy a full-scale electrified bus system and work towards the city’s goal to lower emissions by 80% by 2035. The partners also share the data in a cloud solution to inspire novel business models. The open data has already been used in innovation challenges and school projects.

100%

REDUCTION OF CO₂ AND NOₓ WITH THE FULL ELECTRIC BUSES

THE CHALLENGE

ElectriCity is a unique response to the dual challenge of reducing CO₂ and NOₓ emissions from transit and bridging the knowledge-sharing gap between academia and public and private actors. The collaborative project creates a platform on which multiple actors can share results with one another and test innovative transit system elements that will reduce CO₂ and NOₓ emissions and lower city noise levels.

CO-BENEFITS

Environmental

The electrified buses reduce CO₂ emissions by 80% and produce no NOₓ emissions.

Social

User satisfaction along the route is extremely high, with 80% of passengers happy with the free Wi-Fi and 9 of 10 riders appreciative of indoor boarding.

Economic

Improved liveability and reduced noise and air pollution generate public health savings and boost property values.

Health

The reduced noise and emissions translates into better health outcomes for the community.
Launched in 2014, Mexico City’s Comprehensive Mobility Program represents a paradigm shift in the city’s approach to urban planning, prioritizing pedestrians, cyclists, and users of the public transportation system over private automobiles in an effort to catalyze economic development and social inclusion and reduce CO₂ emissions. The Comprehensive Mobility Program is structured under a number of strategic areas, with a clear focus on creating complete streets that prioritize active and public transit and fostering transit-oriented development (TOD).

To support these goals, Mexico City has already added 65 CNG buses on two lines, transporting 23,000 users a day; extended its bus rapid transit system to cover six lines; and expanded its bike-sharing system, Ecobici, to 6,000 bicycles and 444 stations. In the coming years, the program, which is closely linked to Mexico City’s General Development Program 2013-2018, will further transform the city, improving access to social and economic opportunities by adding 110 km of cycling infrastructure and cleaning the city’s air by replacing 20,000 old polluting minibuses and taxis with new cleaner vehicles.

Mexico City is transforming its transportation network to prioritize active mobility and transit-oriented development in an effort to create a more connected, coordinated, and accessible urban landscape.

THE CHALLENGE
Covering nearly 1,500 km², Mexico City’s sprawling footprint has led to inequitable access to key city resources and high CO₂ emissions. By overhauling the city’s transportation network to focus on mobility and access via active and public transit, Mexico City is taking the major necessary steps to redefine its landscape, reduce car dependence, and cultivate a connected and coordinated city.

CO-BENEFITS

- **Environmental**
 As the transport sector is the main contributor to Mexico City’s CO₂ emissions, prioritizing active mobility and public transit will substantially reduce energy use.

- **Social**
 A focus on transit-oriented development will help more city residents to access crucial economic opportunities and city services via affordable public transport.

- **Economic**
 Economic activity along Calle Madero, a historic street that received mobility improvements, has increased by 80% in the form of sales, employment, and business investment.

- **Health**
 Replacing tens of thousands of polluting minibuses and taxis, and adding CNG buses to the city’s fleet, will reduce outdoor air pollution.

1 Compact of Mayors. Mexico City. 2015.
Estonia’s capital recently launched Europe’s largest initiative for FFPT to date. Since January 2013, Tallinn has provided free public transport in buses, trams, and trolleybuses to all city residents and all students in Estonia. This is an extension of a successful measure that allowed preschoolers, the elderly, and public servants to travel fare-free. The project curbs private car use, a growing trend in the country, and has contributed to a 7.5% annual decrease in congestion in the city center between 2011 and 2015. City residents now enjoy cleaner air, safer streets, and savings on transport costs.

The initiative is publicly funded, and the city received strong support from their constituency. A public poll on FFPT, conducted in March 2012, showed massive 75.5% support for the initiative. Furthermore, there has been a significant increase in the number of registered and tax-paying Tallinners since the implementation of free public transport, which the city believes is a result of the initiative.

Universal Fare-Free Public Transport

Fare-Free Public Transport (FFPT) is now available to all residents of Tallinn, improving traffic circulation in the city and receiving wide citizen support.

Estonia’s capital recently launched Europe’s largest initiative for FFPT to date. Since January 2013, Tallinn has provided free public transport in buses, trams, and trolleybuses to all city residents and all students in Estonia. This is an extension of a successful measure that allowed preschoolers, the elderly, and public servants to travel fare-free. The project curbs private car use, a growing trend in the country, and has contributed to a 7.5% annual decrease in congestion in the city center between 2011 and 2015. City residents now enjoy cleaner air, safer streets, and savings on transport costs.

The initiative is publicly funded, and the city received strong support from their constituency. A public poll on FFPT, conducted in March 2012, showed massive 75.5% support for the initiative. Furthermore, there has been a significant increase in the number of registered and tax-paying Tallinners since the implementation of free public transport, which the city believes is a result of the initiative.

CO-BENEFITS

Environmental
The decrease in congestion reduces car engine idling, resulting in lower greenhouse gas emissions and air pollution.

Social
Universal free public transport guarantees mobility for unemployed and low-income residents.

Economic
Forty-three percent of respondents to a city-wide survey say fare-free public transport has improved the possibility of finding a job.

The savings on bus fare from the FFPT initiative improve people’s livelihoods.
CITY: COPENHAGEN

Smart Traffic Signals Boost Cycling

Copenhagen is making its transportation system more intelligent and modernizing its traffic signals to be controlled in real time in order to further promote cycling and public transport.

Copenhagen is investing in Intelligent Transport Systems (ITS) by installing new controllers in traffic signals at the city’s 380 intersections. The new technology not only enables the city to control traffic and optimize signals in real time, resulting in more efficient flow of bikes and buses, but also decreases the energy use of traffic signals by one-third. Overall, the travel time of cyclists will be reduced by 10% and travel time for buses is expected to decrease by up to 20%. The city hopes the improvements will entice even more people to partake in cycling in particular, which already accounts for 45% of commutes.

Copenhagen is also using the smart traffic signals to reduce the number of stops for cyclists by 10%, which will reduce the incidence of accidents. ITS will help Copenhagen achieve its vision to have 75% of all trips in the city be by bike, by public transport, or on foot by 2025.

THE CHALLENGE

Copenhagen has an ambitious goal of becoming CO₂ neutral by 2025, but also has to manage a population growth of 1,000 citizens per month, which puts a strain on the space allocated for traffic. By modernizing the city’s infrastructure, Copenhagen wants to encourage more people to take up cycling on a daily basis and further limit traffic.

CO-BENEFITS

Environmental
The smart traffic lights help prevent congestion and decrease emissions from idle cars and trucks.

Social
By making mobility and public transportation accessible and attractive to all citizens, Copenhagen is working to improve quality of life throughout the entire city.

Economic
With the upgrade of the traffic lights, the city saves money on repairs of the outdated models which experienced frequent blackouts.

Health
By prioritizing cycling, Copenhagen counteracts some of the health risks associated with a sedentary lifestyle.
In 2014, Santa Monica began using biomethane, harvested from organic waste in landfills, as fuel for the 200 vehicles in its Big Blue Bus fleet. The new fuel, created by Clean Energy Fuel Corp., produces 90% less CO₂ emissions than conventional diesel. The project not only reduces the Big Blue Bus fleet’s footprint — responsible for 50% of municipal operations emissions — but also recycles the methane emissions of the landfill. The initiative helped the city surpass a goal stated in its 15x15 Climate Action Plan, as it reduced city CO₂ emissions by 13,480 metric tons in 2015 compared to the projected 8,000 metric tons.

The transformation of the bus fleet is popular with residents and visitors; from 2014 to 2015, nearly 19 million passengers rode the Big Blue Bus. The project has established Big Blue Bus as one of the USA’s first municipal transit authorities to convert its entire fleet to a liquefied renewable natural gas fuel.
Torres Vedras, Portugal, population 20,000, is implementing a holistic mobility strategy with a focus on active mobility and electric vehicle promotion. The strategy involves expanding the city’s free bike-sharing system with 14 new bike-sharing parks that each include 30 electric bicycles and charging points available directly on the docking stations. Furthermore, more than 15% of public spaces have been remodeled to allow increased access to pedestrians and bicycles. The municipality also introduced taxed parking in the city center to lessen traffic in the historic area. These measures will contribute to Torres Vedras Sustainable Energy Action Plan, which aims to reduce CO₂ emissions by 29%, compared to 2009 levels, by 2020.

The changes have been popular so far in the small but environmentally conscious city. The new bike-sharing system has recorded a high number of memberships, with more than 1,400 users and 25,000 rides after two years of operation. The city also has an ambitious vision to repurpose 50% of public spaces away from car use in the next four years.

Torres Vedras’ approach to active transportation proves small cities can deliver best practices in bike-sharing and electric vehicle promotion.
Paris is instituting a suite of initiatives to combat air pollution and promote mobility, with a focus on eliminating diesel vehicles and promoting bike- and car-sharing services.

Paris’ ambitious mix of public policy initiatives and investment in alternative modes of mobility is tackling the city’s air quality problems. Specific measures include improving the pedestrian network, promoting the use of electric vehicles, and banning the use of polluting diesel vehicles by 2020. By gradually implementing these policies over the coming years, Paris hopes to achieve its ultimate goal of reducing transportation emissions by 60% by 2020.

Other key measures of Paris’ plan to combat traffic-related air pollution are improvements to the city’s flagship self-service bike- and electric car-sharing programs, Velib’ and Autolib’. To support these services, Paris added 1,279 bicycle parking spots in 2014 and will install 1,400 km of cycle lanes by 2020, with the goal of increasing the share of trips made by bikes to 15% by that year. In addition, citizens who give up their car can receive financial help to subscribe to Velib’ or Autolib’ or to Navigo, the city-wide public transport pass.

By increasing the amount of cycle-friendly spaces throughout the city, Paris aims to spur the uptake of the activity.
In order to help reach its ambitious goal of eliminating greenhouse gas emissions attributable to transport by 2050, Seattle is spurring the mass electrification of many modes of transport, including passenger cars, trucks, transit, off-road vehicles, and maritime transportation through its Drive Clean Initiative. The measure includes a plan to reduce greenhouse gas emissions from the city’s municipal fleet through significant investment in energy-efficient vehicles and cleaner fuels and deployment of 15,000 electric vehicles by 2025. The initiative includes not only the municipal fleet electrification strategy but also infrastructure investment by Seattle City Light, opportunities for public-private partnerships, and use of regulations to accelerate the process. The city’s commitment to low-carbon transportation modes has already attracted investments, as BMW relocated the North American headquarters of its car-sharing service – ReachNow – to Seattle.

→ Seattle has a vision to transform how its transportation systems are fueled and is preparing to overhaul all city-owned transport fleets with electric vehicles.

In order to help reach its ambitious goal of eliminating greenhouse gas emissions attributable to transport by 2050, Seattle is spurring the mass electrification of many modes of transport, including passenger cars, trucks, transit, off-road vehicles, and maritime transportation through its Drive Clean Initiative. The measure includes a plan to reduce greenhouse gas emissions from the city’s municipal fleet through significant investment in energy-efficient vehicles and cleaner fuels and deployment of 15,000 electric vehicles by 2025. The initiative includes not only the municipal fleet electrification strategy but also infrastructure investment by Seattle City Light, opportunities for public-private partnerships, and use of regulations to accelerate the process. The city’s commitment to low-carbon transportation modes has already attracted investments, as BMW relocated the North American headquarters of its car-sharing service – ReachNow – to Seattle.

The city’s expenditure on energy will decrease with the transition to electricity-powered transport, as it will reduce fuel expenses and turn resources towards in-state electricity providers.

Health
The elimination of tailpipe emissions from fossil fuel-burning engines provides significant health benefits to local communities.

© Oran Viriyincy

Through this initiative, Seattle will encourage the use of electric shared vehicles and public transport, and decrease congestion and air pollution in the city.
Under PlanMob-BH, Belo Horizonte has introduced new strategies to improve mobility in the city. The plan includes the addition of 60 km of bus rapid transit (BRT) and metro lines as well as a bike-sharing system, among other schemes, to stimulate active mobility and reduce travel times. PlanMob-BH is the result of a public-private partnership between the government, international agencies, and bus companies that helped finance new buses. The new projects contribute to the city’s Reduction of Greenhouse Gases Plan and will account for 28% of the city’s 2030 goal of reducing 1.45 million tons of CO₂ emissions per year.

The new initiatives have also been positively received by commuters. In a city survey, 52% of respondents said they spend less time on public transport after the extension of the BRT. Belo Horizonte is one of the first cities in Brazil to prepare an urban mobility plan in accordance with the country’s overall strategy.

Under PlanMob-BH, Belo Horizonte has introduced new strategies to improve mobility in the city. The plan includes the addition of 60 km of bus rapid transit (BRT) and metro lines as well as a bike-sharing system, among other schemes, to stimulate active mobility and reduce travel times. PlanMob-BH is the result of a public-private partnership between the government, international agencies, and bus companies that helped finance new buses. The new projects contribute to the city’s Reduction of Greenhouse Gases Plan and will account for 28% of the city’s 2030 goal of reducing 1.45 million tons of CO₂ emissions per year.

The new initiatives have also been positively received by commuters. In a city survey, 52% of respondents said they spend less time on public transport after the extension of the BRT. Belo Horizonte is one of the first cities in Brazil to prepare an urban mobility plan in accordance with the country’s overall strategy.
SUSTAINABLE COMMUNITIES

STOCKHOLM
Walkable City Drives Long-Term Growth
P. 151

HONG KONG
From Brownfield to Low-Carbon Business District
P. 148

BARCELONA
Citizen Initiatives Drive Climate Action
P. 155

CAPE TOWN
Transformative Land Use Plan Supports Transit
P. 145

WUHAN
Dense District Seeks Energy-Efficient Future
P. 154

AUCKLAND
Smart Green Waterfront Development
P. 147
The solutions in the Sustainable Communities sector illustrate how cities integrate resilience and mitigation strategies in neighborhood regeneration projects, engage citizens in planning and executing climate initiatives, and transform the urban landscape to promote healthy and low-carbon development.
Toronto’s Sustainable Neighbourhood Retrofit Action Plan (SNAP) is a locally tailored home retrofit program reaching both homeowners and renters with building upgrades and community enhancement initiatives. Assisting residents from planning to implementation of projects, SNAP simultaneously targets energy conservation, urban forest enhancement, water conservation, and stormwater management, as well as local food production in order to create more resilient neighborhoods.

In the Black Creek neighborhood, a community of 25,000 people which was home to one of SNAP’s six pilot projects, positive results have already been observed; 88% of participants have undertaken at least one retrofit action since the program launched in 2012. One SNAP program underway in Black Creek, Harvest the Rain, has distributed 217 rain barrels to residents in an effort to protect against basement flooding while using the collected water to support vegetable gardens and tree planting. City-wide, SNAP measures are expected to reduce stormwater runoff and pollutants from private lots by 30%, expand urban forest cover by 8%, and reduce electricity use by 10%.
CITY: CAPE TOWN

Transformative Land Use Plan Supports Transit

By integrating transport into its long-term development strategy, Cape Town will ensure that land use is best organized to suit residents’ needs and reduce greenhouse emissions.

With its Transit Oriented Development Strategic Framework (TODSF), Cape Town is using transport as the foundation of its long-term land use management and growth development, marking a paradigm shift for the city, which wants to become more compact and connected. The TODSF’s priorities include a modal shift towards public transport, the reduction of travel distances and costs, and the alleviation of urban sprawl through the optimization of land use. Concrete measures include a 12% improvement in access to transit and a 23% reduction in passenger kilometers traveled by 2032.

To embark on this new vision, Cape Town developed an optimized transport scenario that will direct the organization of different land uses, including transport zones, public utilities, and businesses, and identify the actors necessary to deliver the new developments. To facilitate the uptake of the new directives, this focus on transit-oriented development will be embedded within all strategic and built environment plans of the city and will be used as a sustainable growth management tool.

Cape Town’s bus rapid transit system, seen here as the continuous red line in the road, is helping the city achieve its vision of being more connected and equitable.
Smart Green Waterfront Development

→ By using smart sensors and development contracts tied to environmental standards, Auckland is ensuring the climate resilience and energy efficiency of its largest waterfront redevelopment project.

Data capture and reporting through neighborhood-scale smart infrastructure is central to Auckland’s largest urban regeneration project to date: Wynyard Quarter, an 18-hectare former brownfield waterfront site. From the plan’s inception in 2011, the city has enforced strict environmental performance targets and is using state-of-the-art sensors to gather detailed data on the project’s goals, including energy efficiency, sustainable transport, and climate adaptation. The data collected will enable the city to monitor the environmental performance of Wynyard Quarter over time.

Environmental standards were integrated in the development’s construction contracts to ensure that the city’s goals are met. With these measures, the city wants to reach a respective 48% and 79% reduction in greenhouse gas emissions from energy and transport compared to business as usual in Wynyard Quarter. Special attention was also given to the climate resilience of the waterfront project, with the incorporation of sustainable design features like stormwater infrastructure, rainwater harvesting, and waterproof basement pumping stations.

CO-BENEFITS

Environmental

Wynyard Quarter is an old industrial area that was severely contaminated in the past. By improving water quality and remediating the land, the project will help restore the biodiversity and ecology of the area.

Social

As transparency is one of the stated goals of the redevelopment project, citizens can view the environmental impact of the development in real time on a city website.

Economic

By 2040, the waterfront redevelopment will contribute $4.29 billion to Auckland’s economy and support 20,000 new full-time jobs in the city.

Health

Wynyard Quarter aims to have 70% of trips made by walking, cycling, or public transport, fostering a healthier lifestyle for residents.

Part of the waterfront development project was the opening of Daldy Street Linear park, a 38m wide green park that incorporates a walkway, cycleway and low speed street.
CITY: HONG KONG

From Brownfield to Low-Carbon Business District

In redeveloping the industrial Kowloon East brownfield into a thriving business district, Hong Kong is using innovative infrastructure to reduce energy consumption, improve mobility, and conserve resources.

The Energizing Kowloon East redevelopment project aims not only to transform Kowloon East into an additional central business district of Hong Kong but also a resilient, low-carbon community. To achieve this, the city has installed a large-scale district cooling system, serving about 1.73 million m² of floor space. Furthermore, both new and existing buildings in the district will have to adopt green certifications and provide electric vehicle charging facilities. So far, the 30 green building projects in Kowloon East have reduced CO₂ emissions by 56,100 metric tons annually.

In addition to reductions in energy use, the city is promoting active mobility in Kowloon East by improving walkability and well-integrated pedestrian networks. The district is also conscious of its adaptation measures, working to improve drainage and water quality while ramping up flood protection capacity. Boosting this effort, one-third of Kowloon East will be public space, and 60% of that land will consist of green areas.

\[\text{TONS OF CO}_2 \text{ EMISSION PER YEAR WILL BE REDUCED DUE TO KOWLOON EAST’S DISTRICT COOLING SYSTEM}\]

\[59.5K\]

\[\text{THE CHALLENGE}\]

Hong Kong had the double challenge to render Kowloon East economically attractive while ensuring the area’s CO₂ mitigating abilities and resilience to climate change in the face of increasing water levels. The city integrated green development directives and policy into the neighborhood’s redevelopment plan to ensure that climate impacts were mitigated.

\[\text{CO-BENEFITS}\]

Environmental

Compared with the 2011 base value, NO₂, PM10, and PM2.5 concentrations in the Kwun Tong section of Kowloon East had decreased by 12.7%, 10.2%, and 12.9%, respectively, in 2015.

Social

The remediated waterfronts have become popular destinations for art and cultural events in the district.

Economic

The district cooling system saves up to 10% of the private capital required to build conventional cooling plants and enables more flexible building design.

Health

Various pedestrian-centric improvements promote active mobility, which will result in positive health outcomes for the community.

\[\text{The Kwun Tong Promenade offers Kowloon East residents a beautiful and resilient recreational public space.}\]
Atlanta’s BeltLine (ABL) is a 35.4 km transit corridor that improves mobility and addresses urban sprawl by connecting 45 inner-city neighborhoods and creating links to suburban transit systems. One of the largest and most comprehensive urban development projects in the country, the BeltLine will join 53.1 km of multi-use trail to 80.5 km of modern streetcar transportation.

The Eastside Trail, a key stretch of the ABL, is designed to cater to commuters who rely on their cars for short trips in the city center. When constructing the Eastside Trail, the city included improvements to further benefit the community and boost resilience. For instance, it transformed a barren, contaminated site that was prone to flooding into the 6.9-hectare Historic Fourth Ward Park. The environmental remediation removed 1,700 tons of contaminated soil. The park also sports a built-in flood protection and stormwater management system. When the Eastside Trail is complete in 2030, it is expected to reduce CO₂ emissions by 123,000 metric tons from the 2014 baseline.

CITY: ATLANTA

Increased Connectivity Curbs Urban Sprawl

→ Atlanta’s BeltLine is a large-scale urban mobility project that connects residents with trails and public transit while remediating land and decreasing the risk of flooding.

Atlanta’s BeltLine (ABL) is a 35.4 km transit corridor that improves mobility and addresses urban sprawl by connecting 45 inner-city neighborhoods and creating links to suburban transit systems. One of the largest and most comprehensive urban development projects in the country, the BeltLine will join 53.1 km of multi-use trail to 80.5 km of modern streetcar transportation.

The Eastside Trail, a key stretch of the ABL, is designed to cater to commuters who rely on their cars for short trips in the city center. When constructing the Eastside Trail, the city included improvements to further benefit the community and boost resilience. For instance, it transformed a barren, contaminated site that was prone to flooding into the 6.9-hectare Historic Fourth Ward Park. The environmental remediation removed 1,700 tons of contaminated soil. The park also sports a built-in flood protection and stormwater management system. When the Eastside Trail is complete in 2030, it is expected to reduce CO₂ emissions by 123,000 metric tons from the 2014 baseline.

CO-BENEFITS

- **Environmental**
 The Atlanta BeltLine Arboretum is planting thousands of new trees across 526 hectares and removing invasive species in the ABL.

- **Social**
 The project is expected to add 28,000 units of housing, with 5,600 of these units classified as affordable housing.

- **Economic**
 By 2015, the ABL had created 6,100 permanent jobs, 22,490 construction jobs, and $3.1 billion in economic development.

- **Health**
 The Eastside Trail promotes active modes of travel and daily physical activity that could help prevent or reduce the occurrence of cardiovascular diseases.
Cambridge has embraced a resilience and low-carbon focus in creating its overall urban development strategy, Envision Cambridge. The new roadmap will develop and design policy recommendations on a broad range of topics such as housing and affordability, mobility, economic opportunity, and urban form, with a particular focus on climate and the environment. As citizen involvement is key to the plan’s success, the city is employing a number of creative engagement strategies to reduce barriers to participation in consultation sessions, ensuring diverse communities have a voice in the process. Strategies include providing translators and childcare during consultation sessions and bringing the process directly to communities through mobile meetings.

As Cambridge aims to reduce greenhouse gas emissions by 80% by 2050, Envision Cambridge established a number of complementary targets, including decreasing transportation emissions by reducing vehicle ownership 15% below 1990 levels by 2020 and increasing solar photovoltaic generation capacity to 160 MW by 2040.
Stockholm believes that making the city denser and more connected is indispensable to creating a thriving city that can grow equitably and sustainably in the face of challenges from globalization and climate change. With its new city-wide plan, Walkable City, Stockholm is promoting walking, cycling, and public transport as well as efficient use of space over driving. To deliver on this vision, the city has extended its bicycle network by 7,000 m in 2015 and utilized measures like a congestion tax, which fines car use in the city center, to invest in walking, cycling, and public transport infrastructure. The mobility plan is crucial in helping Stockholm reach its goal of eliminating CO₂ emissions attributable to transport by 2030.

Ensuring that sustainable growth occurs not only in the city center but also in peripheral communities, Walkable City Stockholm is investing in key strategic transit nodes to connect the entire city. In doing so, the city will not only boost its climate resilience and lower CO₂ emissions but also reduce social disparities between neighborhoods by improving access to the city’s services and unlocking economic opportunities for all residents.

As part of its long-term vision of improving active mobility, Stockholm wants to promote cycling as a means to get to and from work.
The Urban Agriculture program in Curitiba is a community project that rehabilitates degraded land, and makes use of vacant space in private and public locations, including schools, backyards, and balconies, to produce food. Through local organic food production, the city hopes to mitigate the greenhouse gas emissions caused by the transport of food as well as enable more carbon sequestration from increased vegetation. In addition, the urban agriculture project increases food security and can serve as an income-generating activity for participants. Since its launch in 2011, the initiative has generated more than 750 tons of food and has benefitted more than 83,000 people.

The program also fosters social inclusion by providing a therapeutic group activity for a diverse group of participants, including children and the elderly and those afflicted by drug addiction and mental health issues. Environmental awareness and education is also a key element of the project, which offers training activities, including home composting, alternative methods of cultivation, pest control, and soil conservation.

→ Curitiba is turning unused urban land into community gardens in order to improve food security and build social cohesion, while raising awareness about the environmental impacts of commercial food production.

The Urban Agriculture program in Curitiba is a community project that rehabilitates degraded land, and makes use of vacant space in private and public locations, including schools, backyards, and balconies, to produce food. Through local organic food production, the city hopes to mitigate the greenhouse gas emissions caused by the transport of food as well as enable more carbon sequestration from increased vegetation. In addition, the urban agriculture project increases food security and can serve as an income-generating activity for participants. Since its launch in 2011, the initiative has generated more than 750 tons of food and has benefitted more than 83,000 people.

The program also fosters social inclusion by providing a therapeutic group activity for a diverse group of participants, including children and the elderly and those afflicted by drug addiction and mental health issues. Environmental awareness and education is also a key element of the project, which offers training activities, including home composting, alternative methods of cultivation, pest control, and soil conservation.
As part of Wuhan’s Low-Carbon City Pilot Program, Baibuting, a community of 150,000 people living on 5.5 km², is infusing a low-carbon philosophy into its strategic development goals. Launched in 2011, some of the main directives guiding Baibuting’s development are affordable, energy efficient housing, convenient transport, and access to green space and essential services. According to the area’s development strategy, housing construction is encouraged to incorporate low-carbon and climate-resilient technologies.

So far, developers’ investment in renewable energy has yielded a geothermal heat pump heating and cooling system and solar-powered water heaters for the community’s benefit.

Baibuting’s strategy focuses not only on physical improvements but also on the importance of instilling a low-carbon culture and environmentally responsible habits among residents. With the help of 40,000 volunteers, almost a third of the population, the Baibuting council helps residents adopt a green lifestyle by, among other initiatives, bringing awareness to power and water savings and clarifying waste separation guidelines.

→ By focusing on infrastructure development and community engagement, Baibuting, a densely built community in Wuhan, is successfully integrating a low-carbon philosophy into its strategic development.

As part of Wuhan’s Low-Carbon City Pilot Program, Baibuting, a community of 150,000 people living on 5.5 km², is infusing a low-carbon philosophy into its strategic development goals. Launched in 2011, some of the main directives guiding Baibuting’s development are affordable, energy efficient housing, convenient transport, and access to green space and essential services. According to the area’s development strategy, housing construction is encouraged to incorporate low-carbon and climate-resilient technologies.

So far, developers’ investment in renewable energy has yielded a geothermal heat pump heating and cooling system and solar-powered water heaters for the community’s benefit.

Baibuting’s strategy focuses not only on physical improvements but also on the importance of instilling a low-carbon culture and environmentally responsible habits among residents. With the help of 40,000 volunteers, almost a third of the population, the Baibuting council helps residents adopt a green lifestyle by, among other initiatives, bringing awareness to power and water savings and clarifying waste separation guidelines.

Developers in Baibuting, Wuhan have incorporated green technologies in their building design, including rain collection systems and artificial wetlands, in order to conserve resources.
In 2015, Barcelona adopted a bottom-up approach to mitigating climate change through its citizen-led initiative Commitment to Climate Change. The city invited more than 800 organizations including schools, businesses, and NGOs to participate in the process, resulting in the creation of nine citizen-centric projects. It is the city’s goal that these actions, along with city-led initiatives, will help Barcelona substantially reduce CO₂ emissions and increase the total urban green area by 1.6 km² by 2030.

The nine citizen-centric plans include a bike-sharing program to encourage people to cycle to work and a mobile application that connects residents who want to swap goods and offer repairs. Another project will employ and train residents to renovate housing with passive and low-cost systems to reduce energy consumption. All these projects work in synergy with Barcelona’s strategic measures to address climate change with the hope that the citizen-driven process will ensure the city’s long-term commitment to climate action.

By collaborating with various civil society actors, Barcelona is engaging residents in developing citizen-led actions that address climate resilience.

Barcelona’s citizen-led projects seek to improve public health through the promotion of walking and cycling.
Methodology

Arriving at the Top 100

Creating Cities100 was a long, multi-step process. The transparency of our application and evaluation procedures is of the utmost importance to the integrity of Cities100. By presenting our methodology we enable readers to understand how we selected these 100 city solutions.

Finding the solutions
Throughout May and June of 2016, Sustainia and C40 conducted a public campaign to encourage as many cities as possible to submit applications for exciting climate change projects to be featured in Cities100. This campaign included direct contact with city officials, desk research, and social media outreach and communication. In all, these efforts yielded 160 applications from 75 cities across every region of the world.

Who was eligible?
In order to ensure that applications came from the most viable, innovative, and replicable solutions, all applications had to meet the following eligibility requirements:

- Applications had to be submitted by a municipality, or by a third-party organization with the support of the cooperating municipality
- Solutions must be operating, and had to be initiated within the past four years
- Solutions must have secured funding

Only C40 cities, or cities that have committed to the Compact of Mayors, were eligible to submit to the following sectors: Adaptation Plans & Assessments, Building Energy Efficiency, Climate Action Plans & Inventories, and Clean Energy. The other six sectors were open to all cities.

In order to feature new solutions each year, projects featured in the 2015 edition of Cities100 were not eligible for consideration in this year’s edition.

<table>
<thead>
<tr>
<th>CITIES SUBMITTED PROJECTS WITHIN 10 SECTORS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEAN ENERGY</td>
</tr>
<tr>
<td>SOLID WASTE</td>
</tr>
<tr>
<td>ADAPTATION PLANS & ASSESSMENTS</td>
</tr>
<tr>
<td>ADAPTATION IN ACTION</td>
</tr>
<tr>
<td>CLIMATE ACTION PLANS & INVENTORIES</td>
</tr>
<tr>
<td>BUILDING ENERGY EFFICIENCY</td>
</tr>
<tr>
<td>FINANCE & ECONOMIC DEVELOPMENT</td>
</tr>
<tr>
<td>SOCIAL EQUITY & CLIMATE CHANGE</td>
</tr>
<tr>
<td>TRANSPORTATION</td>
</tr>
<tr>
<td>SUSTAINABLE COMMUNITIES</td>
</tr>
</tbody>
</table>
How did we score them?
Scoring and ranking such a wide range of innovative projects was no easy task. In order to be as rigorous and objective as possible, we created a detailed, multi-step scoring system.

→ **STEP 1:** First, the Sustainia team of experts analyzed all 160 applications and scored them on the following five criteria:

1. **CLIMATE ACTION**
 → CO₂ reductions or climate change risk mitigation goals and results. Preference was given to results or goals that are measured and assessed quantitatively and to documented results over goals.

2. **CO-BENEFITS**
 → Co-benefits (economic, environmental, health, and social goals and results. Preference was given to results or goals that are measured and assessed quantitatively and to documented results over goals.

3. **INNOVATION**
 → The geographic scale of innovation – this comprises innovation at an international level (e.g. the first in the world to apply this technology, approach, scale, etc.), and innovation at a city or regional level (either across the continent or within that country).
 → The evidence provided to support the claim of the project’s innovativeness.
 → Description of the innovative elements of the project.

4. **GOVERNANCE**
 → Whether the project is referenced within the city’s overall strategy or climate plans.
 → How the project collaborates with other entities in the city (i.e. other city departments, government agencies, NGOs, private companies, etc.).
 → How the project has undertaken citizen engagement activities and whether those activities have been quantified.
 → How citizen engagement has influenced the development and implementation of the project.

5. **SHARING & SCALING**
 → The extent to which the application demonstrates that the project experience has been shared openly or is planned to be shared openly with other cities.
 → Demonstration of plans to scale the project within the city, or a suitable explanation as to why scaling is not possible.

Within each of the five evaluation criteria, solutions were scored on sub-criteria (bullet points listed below each of the aforementioned evaluation criterion). For each sub-criterion, a solution could score 1 (low), 2 (medium), or 3 (high). A solution’s overall score is the sum of their five evaluation criteria scores.

→ **STEP 2:** Once solutions received their initial overall score, a team of C40 sector-specific experts analyzed all projects within their given sector and provided detailed input for all evaluation criteria of every solution based on years of hands-on knowledge and experience. Solutions’ initial scores were adjusted according to this input, yielding a final score for every solution. The highest scoring solutions in each sector were selected to be featured in Cities100.

Writing Notes
Monetary amounts provided by cities have been converted to United States dollars. Distance and volume measurements have been converted to metric system units. In regards to mass, we have used the unit provided by the city in their applications (either tons or metric tons). “Tonnes” have been written as “metric tons.”
Sustainia is an international sustainability think tank and consultancy working to accelerate action towards a sustainable future. In order to realize this, we partner with companies, cities, and organizations to map their position, navigate the changing landscape, and communicate with impact. Sustainia has been unearthing sustainable solutions for more than five years, so we know it’s possible to build the world of tomorrow with the solutions of today.

How we deliver sustainable innovation:

1) Insight

MAPPING & ANALYZING

The world is changing fast and all organizations are struggling to stay ahead. Our research gives us insights into emerging sustainability markets and new business models, policies, and partnerships. We can help you:

→ Map and identify sustainable solutions
→ Prepare for the future with trend analysis

Over the past five years, we have tracked more than 4,500 solutions from all over the world through our flagship Sustainia100 publication.

In 2017, we will launch a new online solutions platform, in partnership with UN Global Compact, to make it even easier to find inspiring solutions for a cleaner, greener, and fairer future.
2) Involvement

NAVIGATING & COLLABORATING

Beyond every risk sits a new opportunity. We apply this mindset to explore new markets through our networks with hundreds of experts, thought leaders and business pioneers. We work with you to develop a new approach – your navigation tool – to tackle your most pressing challenges and find your way in an increasingly complex landscape. We can help you:

→ Turn your risks into business opportunities
→ Co-create and innovate through our Opportunity Services

3) Impact

COMMUNICATING & INFLUENCING

Powerful storytelling and captivating visuals drive influence and impact. We’re shifting the narrative on sustainability by making it inclusive, positive, and compelling. We can help you:

→ Bring your sustainability agenda to life
→ Create events with impact
→ Inspire your audiences through multi-channel campaigns

Based on the latest research and knowledge, combined with specific examples from available technologies, solutions, and products, Sustainia specializes in creating sector-specific studies and analyses, trend reports, visual conceptualization and strategic communication, such as Eat in Sustainia and The State of Healthcare.
Explore C40

Local Action, Global Impact

The C40 Cities Climate Leadership Group connects more than 85 of the world’s greatest cities, representing 650+ million people and one quarter of the global economy. Focused on tackling climate change, C40 provides a forum for cities to share strategies for reducing greenhouse gas emissions and climate risks, while increasing the health, wellbeing and economic opportunities of urban citizens.

Connecting & Learning

C40 networks connect hundreds of city officials around the world, helping them to implement climate action, access partnership resources and overcome technical and financial barriers. Currently working across six initiative areas, C40 delivers over 100 workshops and webinars each year, alongside a dynamic online knowledge exchange platform. Sharing is working. The power of our network is that when one city demonstrates the success of a great idea, other cities can quickly implement it.

- Nearly 75% of C40 cities have been able to take, new, better or faster climate actions as a result of participating in C40 networks; for example, investment in bus rapid transit (BRT) grew from 21 to 42 cities in 2 years.

- C40 cities focus on what works: 50% of all reported actions have gone from pilots to city-wide, up from 15% in 2011.

- Cities’ ambition is still growing with nearly 80% of all actions planned for future expansion.
Empowering Cities with Data

C40 leverages our unprecedented database of city actions, extensive network of partnerships, and unique organizational insight to demonstrate the power of cities to address climate change.

Our research analyzes key trends, identifies opportunities for further action across the global C40 network, and helps to prioritize initiative areas with the greatest potential impact.

C40’s research agenda is committed to creating actionable data, supporting decision-making and driving investments. Our cutting-edge tools, standards and frameworks help cities to implement the most impactful mitigation and adaptation strategies, and measure and manage their effectiveness.

A Global Platform of Mayoral Commitments

By engaging mayors in the international debate on climate and sustainable urban development, C40 highlights the crucial role of cities and the decisive leadership of mayors to place the world on a climate safe pathway, and help secure resources for ambitious local climate action.

In June 2016, cities around the world made another great and historic stride: bringing together the Compact of Mayors, which C40 helped to activate and deliver, and the EU Covenant of Mayors to form a new Global Covenant of Mayors for Climate & Energy. This new initiative will provide a global platform for mayors to transparently record their climate change commitments, building on the pledges already made by 7,100 cities and towns from 119 countries and six continents, representing more than 600 million residents.

C40 has long been committed to the principle that working together helps cities go farther, faster. The Global Covenant of Mayors for Climate & Energy helps us to engage new partners and a broader coalition of city leaders taking concrete, measureable and transparent action on climate change.
Index

<table>
<thead>
<tr>
<th>CITY</th>
<th>SOLUTION</th>
<th>SECTOR</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addis Ababa</td>
<td>Sub-Saharan Africa’s First Light-Rail Train</td>
<td>Transportation</td>
<td>127</td>
</tr>
<tr>
<td>Adelaide</td>
<td>Financial Incentives Spur Green Home Improvements</td>
<td>Finance & Economic Development</td>
<td>107</td>
</tr>
<tr>
<td>Athens</td>
<td>Heatwave Action Plan Protects Vulnerable Residents</td>
<td>Social Equity & Climate Change</td>
<td>123</td>
</tr>
<tr>
<td>Atlanta</td>
<td>Increased Connectivity Curbs Urban Sprawl</td>
<td>Sustainable Communities</td>
<td>149</td>
</tr>
<tr>
<td>Auckland</td>
<td>Collective Action Spurs Emissions Reductions</td>
<td>Climate Action Plans & Inventories</td>
<td>68</td>
</tr>
<tr>
<td>Auckland</td>
<td>Revolving Fund Yields Large Municipal Savings</td>
<td>Finance & Economic Development</td>
<td>105</td>
</tr>
<tr>
<td>Auckland</td>
<td>Smart Green Waterfront Development</td>
<td>Sustainable Communities</td>
<td>147</td>
</tr>
<tr>
<td>Auckland</td>
<td>System Overhaul Reduces and Diverts Waste</td>
<td>Solid Waste</td>
<td>26</td>
</tr>
<tr>
<td>Barcelona</td>
<td>Citizen Initiatives Drive Climate Action</td>
<td>Sustainable Communities</td>
<td>155</td>
</tr>
<tr>
<td>Barcelona</td>
<td>Redefining City Blocks to Tackle Traffic-Related Emissions</td>
<td>Transportation</td>
<td>129</td>
</tr>
<tr>
<td>Belo Horizonte</td>
<td>Mobility Plan Improves Transit Travel Time</td>
<td>Transportation</td>
<td>141</td>
</tr>
<tr>
<td>Belo Horizonte</td>
<td>Vulnerability Assessment Quantifies Risk</td>
<td>Adaptation Plans & Assessments</td>
<td>49</td>
</tr>
<tr>
<td>Bologna</td>
<td>Bottom-up Plan Protects Against Rain, Drought, and Heat</td>
<td>Adaptation Plans & Assessments</td>
<td>45</td>
</tr>
<tr>
<td>Bogotá</td>
<td>Ecosystem Upgrade Secures City Water Supply</td>
<td>Adaptation in Action</td>
<td>64</td>
</tr>
<tr>
<td>Bogotá</td>
<td>Hospital Program Shrinks CO₂ Improves Patient Experience</td>
<td>Building Energy Efficiency</td>
<td>94</td>
</tr>
<tr>
<td>Bogotá</td>
<td>Waste-to-Energy Project Supplies National Grid</td>
<td>Solid Waste</td>
<td>33</td>
</tr>
<tr>
<td>Boston</td>
<td>Data and Stakeholders Build Adaptation Roadmap</td>
<td>Adaptation Plans & Assessments</td>
<td>46</td>
</tr>
<tr>
<td>Boston</td>
<td>Energy Performance Contracting Finances Resilient Infrastructure</td>
<td>Finance & Economic Development</td>
<td>106</td>
</tr>
<tr>
<td>Boston</td>
<td>Mapping Energy Use to Boost Resilience</td>
<td>Clean Energy</td>
<td>22</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>Environmental Education Targets Low-Income Youth</td>
<td>Social Equity & Climate Change</td>
<td>116</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>Four Waste Streams Processed at One Facility</td>
<td>Solid Waste</td>
<td>30</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>Inventory Upgrade Improves Climate Strategy</td>
<td>Climate Action Plans & Inventories</td>
<td>74</td>
</tr>
<tr>
<td>Cambridge</td>
<td>Inclusive Development Plan for City Resilience</td>
<td>Sustainable Communities</td>
<td>150</td>
</tr>
<tr>
<td>Canberra</td>
<td>Reverse Auctions Secure Low-Cost Renewable Energy</td>
<td>Finance & Economic Development</td>
<td>98</td>
</tr>
<tr>
<td>Canberra</td>
<td>Working towards Carbon Neutral City Operations</td>
<td>Climate Action Plans & Inventories</td>
<td>70</td>
</tr>
<tr>
<td>Cape Town</td>
<td>Transformative Land Use Plan Supports Transit</td>
<td>Sustainable Communities</td>
<td>145</td>
</tr>
<tr>
<td>Cape Town</td>
<td>Turning Trashed Bins into Trash Bins</td>
<td>Solid Waste</td>
<td>37</td>
</tr>
<tr>
<td>Charlotte</td>
<td>Behavioral Changes and Building Upgrades Yield Energy Savings</td>
<td>Building Energy Efficiency</td>
<td>90</td>
</tr>
<tr>
<td>Chicago</td>
<td>Adsorptive Playgrounds Foster Social Cohesion</td>
<td>Adaptation in Action</td>
<td>55</td>
</tr>
<tr>
<td>Chicago</td>
<td>Energy Savings Fund Efficiency Investments</td>
<td>Finance & Economic Development</td>
<td>99</td>
</tr>
<tr>
<td>Copenhagen</td>
<td>Smart Traffic Signals Boost Cycling</td>
<td>Transportation</td>
<td>135</td>
</tr>
<tr>
<td>Curitiba</td>
<td>Urban Voids Become Community Gardens</td>
<td>Sustainable Communities</td>
<td>153</td>
</tr>
<tr>
<td>Delhi</td>
<td>Turning Waste into Energy and Better Livelihoods</td>
<td>Solid Waste</td>
<td>31</td>
</tr>
<tr>
<td>Dubai</td>
<td>Decision Support System Sends Extreme Weather Warnings</td>
<td>Adaptation Plans & Assessments</td>
<td>47</td>
</tr>
<tr>
<td>Eugene</td>
<td>Assessment Identifies Risks to Interconnected Systems</td>
<td>Adaptation Plans & Assessments</td>
<td>44</td>
</tr>
<tr>
<td>Eugene</td>
<td>Food Waste Is Given New Value</td>
<td>Solid Waste</td>
<td>32</td>
</tr>
<tr>
<td>Gothenburg</td>
<td>Collaborative Approach to Public Transit Innovation</td>
<td>Transportation</td>
<td>131</td>
</tr>
<tr>
<td>Guangzhou</td>
<td>Energy Audits and Retrofits Mandated for Large Public Buildings</td>
<td>Building Energy Efficiency</td>
<td>84</td>
</tr>
<tr>
<td>Guangzhou</td>
<td>Low-Carbon Megacity Encourages Green Growth</td>
<td>Climate Action Plans & Inventories</td>
<td>77</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>From Brownfield to Low-Carbon Business District</td>
<td>Sustainable Communities</td>
<td>148</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Recycling Centers Cut Waste and Spur Behavior Change</td>
<td>Solid Waste</td>
<td>34</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Water Security through Supply and Demand Management</td>
<td>Adaptation in Action</td>
<td>54</td>
</tr>
<tr>
<td>Istanbul</td>
<td>Automated Measuring Supports Biogas Project</td>
<td>Clean Energy</td>
<td>16</td>
</tr>
<tr>
<td>Johannesburg</td>
<td>Waste-to-Energy Partnership Saves Money</td>
<td>Clean Energy</td>
<td>19</td>
</tr>
<tr>
<td>Kampala</td>
<td>Strategy Drives Resilient City Operations in Africa</td>
<td>Climate Action Plans & Inventories</td>
<td>76</td>
</tr>
<tr>
<td>Kolkata</td>
<td>Segregating Waste Leads to a Better Quality of Life</td>
<td>Solid Waste</td>
<td>28</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>Electric Car-Sharing in Low-Income Communities</td>
<td>Social Equity & Climate Change</td>
<td>117</td>
</tr>
<tr>
<td>Medellín</td>
<td>Restoring Ecosystems Provides Opportunities for Locals</td>
<td>Adaptation in Action</td>
<td>59</td>
</tr>
<tr>
<td>Mexico City</td>
<td>New Park Boosts Resilience and Economic Potential</td>
<td>Social Equity & Climate Change</td>
<td>118</td>
</tr>
<tr>
<td>Mexico City</td>
<td>Reshaping Streets Prevents Flooding and Ensures Safety</td>
<td>Adaptation in Action</td>
<td>65</td>
</tr>
<tr>
<td>CITY</td>
<td>SOLUTION</td>
<td>SECTOR</td>
<td>PAGE</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Mexico City</td>
<td>Transportation Overhaul Guides Urban Development</td>
<td>Transportation</td>
<td>133</td>
</tr>
<tr>
<td>New Haven</td>
<td>Awareness Campaign Gets Residents to Think Outside the Car</td>
<td>Social Equity & Climate Change</td>
<td>121</td>
</tr>
<tr>
<td>New Orleans</td>
<td>Capturing Rainwater Curbs Flooding Events</td>
<td>Adaptation in Action</td>
<td>58</td>
</tr>
<tr>
<td>New York City</td>
<td>Data-Driven Outreach Leads to Building Retrofits</td>
<td>Building Energy Efficiency</td>
<td>92</td>
</tr>
<tr>
<td>New York City</td>
<td>Innovative Data Analysis Leads to Coastline Protection</td>
<td>Adaptation in Action</td>
<td>60</td>
</tr>
<tr>
<td>New York City</td>
<td>Legal Ordinance for Solar-Powered Buildings</td>
<td>Clean Energy</td>
<td>23</td>
</tr>
<tr>
<td>New York City</td>
<td>Low-Cost Financing Enables Affordable Housing Retrofits</td>
<td>Finance & Economic Development</td>
<td>108</td>
</tr>
<tr>
<td>New York City</td>
<td>Resilience Study Prepares Communities for Future Flooding</td>
<td>Adaptation Plans & Assessments</td>
<td>40</td>
</tr>
<tr>
<td>New York City</td>
<td>Sustainability Agenda Protects Public Housing</td>
<td>Social Equity & Climate Change</td>
<td>112</td>
</tr>
<tr>
<td>Nijmegen</td>
<td>Embracing the River to Combat Flooding</td>
<td>Adaptation in Action</td>
<td>56</td>
</tr>
<tr>
<td>Oakland</td>
<td>Consumption Inventory Shows True Emissions</td>
<td>Climate Action Plans & Inventories</td>
<td>78</td>
</tr>
<tr>
<td>Oslo</td>
<td>Green Procurement in the Construction Industry</td>
<td>Finance & Economic Development</td>
<td>103</td>
</tr>
<tr>
<td>Paris</td>
<td>Adaptation Strategy Secures Crucial Resources</td>
<td>Adaptation Plans & Assessments</td>
<td>43</td>
</tr>
<tr>
<td>Paris</td>
<td>Greening District Heating Cuts Emissions</td>
<td>Clean Energy</td>
<td>20</td>
</tr>
<tr>
<td>Paris</td>
<td>Renewed Plan Advances Climate Action</td>
<td>Climate Action Plans & Inventories</td>
<td>72</td>
</tr>
<tr>
<td>Paris</td>
<td>Transport Policy Curbs Air Pollution</td>
<td>Transportation</td>
<td>138</td>
</tr>
<tr>
<td>Quito</td>
<td>Creating Electricity and Compost from Organic Waste</td>
<td>Solid Waste</td>
<td>27</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>Carbon-Neutral Commitment in Global South</td>
<td>Climate Action Plans & Inventories</td>
<td>80</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>Input and Collaboration Shape Resilience Strategy</td>
<td>Adaptation Plans & Assessments</td>
<td>51</td>
</tr>
<tr>
<td>Salvador</td>
<td>Tree Planting Project Sequesters and Reduces CO₂ Emissions</td>
<td>Solid Waste</td>
<td>36</td>
</tr>
<tr>
<td>San Diego</td>
<td>Bipartisan Plan Accelerates Climate Change Action</td>
<td>Climate Action Plans & Inventories</td>
<td>73</td>
</tr>
<tr>
<td>San Francisco</td>
<td>Equitable Retrofits Lower Energy Bills</td>
<td>Building Energy Efficiency</td>
<td>86</td>
</tr>
<tr>
<td>Santa Monica</td>
<td>Landfill-Captured Biomethane Pwers Bus Fleet</td>
<td>Transportation</td>
<td>136</td>
</tr>
<tr>
<td>Seattle</td>
<td>Getting Ready for Mass Electrification of Transport</td>
<td>Transportation</td>
<td>140</td>
</tr>
<tr>
<td>Seoul</td>
<td>Public-Private Partnership Prevents Energy Poverty</td>
<td>Social Equity & Climate Change</td>
<td>115</td>
</tr>
<tr>
<td>Singapore</td>
<td>Comprehensive Plan Yields Quick Results</td>
<td>Climate Action Plans & Inventories</td>
<td>69</td>
</tr>
<tr>
<td>Stockholm</td>
<td>Large Biomass Plant Powers Fossil Fuel-Free Future</td>
<td>Clean Energy</td>
<td>18</td>
</tr>
<tr>
<td>Stockholm</td>
<td>Walkable City Drives Long-Term Growth</td>
<td>Sustainable Communities</td>
<td>151</td>
</tr>
<tr>
<td>Sydney & Melbourne</td>
<td>City Alliance Yields Nationwide Energy Savings</td>
<td>Building Energy Efficiency</td>
<td>88</td>
</tr>
<tr>
<td>Taiyuan</td>
<td>World’s Fastest Electric Taxi Fleet Overhaul</td>
<td>Transportation</td>
<td>130</td>
</tr>
<tr>
<td>Tallinn</td>
<td>Universal Fare-Free Public Transport</td>
<td>Transportation</td>
<td>134</td>
</tr>
<tr>
<td>Taoyuan</td>
<td>New Water Saucing for Farm Productivity</td>
<td>Adaptation Plans & Assessments</td>
<td>41</td>
</tr>
<tr>
<td>Taoyuan</td>
<td>Plan Seeks Behavior Change and Green Industry Growth</td>
<td>Climate Action Plans & Inventories</td>
<td>81</td>
</tr>
<tr>
<td>Taoyuan</td>
<td>River Remediation Protects and Beautifies Land</td>
<td>Adaptation in Action</td>
<td>62</td>
</tr>
<tr>
<td>Tokyo</td>
<td>Owners and Renters Collaborate to Reduce Energy Use</td>
<td>Building Energy Efficiency</td>
<td>89</td>
</tr>
<tr>
<td>Toronto</td>
<td>Adaptation Report Informs Cross-Sector Collaboration</td>
<td>Adaptation Plans & Assessments</td>
<td>50</td>
</tr>
<tr>
<td>Toronto</td>
<td>Affordable Loans for Home Efficiency Upgrades</td>
<td>Finance & Economic Development</td>
<td>100</td>
</tr>
<tr>
<td>Toronto</td>
<td>Apartment Retrofits Prioritize Resident Well-Being</td>
<td>Building Energy Efficiency</td>
<td>85</td>
</tr>
<tr>
<td>Toronto</td>
<td>Neighborhood Renewal Boosts Climate Resilience</td>
<td>Sustainable Communities</td>
<td>144</td>
</tr>
<tr>
<td>Torres Vedras</td>
<td>Holistic Approach to Active Mobility</td>
<td>Transportation</td>
<td>137</td>
</tr>
<tr>
<td>Tshwane</td>
<td>Small-Scale Farming Reaps Big Community Benefits</td>
<td>Social Equity & Climate Change</td>
<td>113</td>
</tr>
<tr>
<td>Vancouver</td>
<td>North America’s First Renewably Powered City</td>
<td>Clean Energy</td>
<td>15</td>
</tr>
<tr>
<td>Vilnius</td>
<td>Online Tool Tracks Apartment Energy Use</td>
<td>Building Energy Efficiency</td>
<td>95</td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>Green Finance Advances Housing Affordability</td>
<td>Finance & Economic Development</td>
<td>102</td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>Low-Cost Bike-Share Memberships for Low-Income Earners</td>
<td>Social Equity & Climate Change</td>
<td>120</td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>World’s Largest Thermal Hydrolysis Plant</td>
<td>Clean Energy</td>
<td>14</td>
</tr>
<tr>
<td>Wuhan</td>
<td>Carbon Credit Scheme Bolsters Massive Bike-Share Program</td>
<td>Transportation</td>
<td>126</td>
</tr>
<tr>
<td>Wuhan</td>
<td>Dense District Seeks Energy-Efficient Future</td>
<td>Sustainable Communities</td>
<td>154</td>
</tr>
<tr>
<td>Wuhan</td>
<td>Research Center Built with Green Design Principles</td>
<td>Building Energy Efficiency</td>
<td>91</td>
</tr>
<tr>
<td>Wuhan</td>
<td>Waterlogging Prevented by Sponge Infrastructure</td>
<td>Adaptation in Action</td>
<td>61</td>
</tr>
</tbody>
</table>
It has become obvious that cities play a critical role in adapting to climate change and delivering on the ambition of the Paris Agreement. Urban areas account for most of the world’s carbon emissions, and their share will continue to increase as two-thirds of the world will call cities home by 2050. Such booming populations bring with them challenges, but also myriad opportunities to adapt and grow sustainably. As Cities100 showcases, cities around the world are already capitalizing on these opportunities and employing local solutions that not only reduce CO₂ emissions and boost resilience, but also promote health, bolster economic vitality, and alleviate social inequities.

The solutions in Cities100 were selected after a review of 160 submissions from 75 cities spread across the globe. By identifying 100 readily available city solutions, the partners behind Cities100 – C40, Realdania, and Sustainia – wish to highlight the potential for a sustainable urban future and inspire other change makers throughout the world.

→ 100 solutions for climate action in cities